

Identifying, Managing, and Accessing Undefined
Tuple States in Relational Databases

Michal Kvet

Department of Informatics, Faculty of Management Science and Informatics

Michal.Kvet@fri.uniza.sk

Abstract

Keywords— bitmap, index, null categorization, reference,
relational database, undefined value

I. INTRODUCTION

Databases have become the basis of data processing over
the decades. Almost no information system can do without
database support. Data amount is still rising, and individual
approaches and architectures must respond adequately to
ensure performance [1].

Relational databases were created in the 60ties of the 20th
century and are still used. They are formed by the entities and
relationships between them, focused on the data
normalization. Access and management themselves are
supervised by the database optimizer dealing with the
relational algebra transforming the query into individual
operations to access the data and compose the result set [5].
The main advantage of relational database processing is
associated with data modeling and integrity. Each data table
(entity) is defined by attributes, delimited by the unique
names, data types, and additional constraints.

The whole database integrity is formed by individual rules
associated with the particular attributes, sets of attributes, or
applied on the table or relationships. It deals with the
following categories [5][6]:

Column integrity deals with the property of
uniqueness, or duplicate values are allowed. It also
covers the management of undefined values modeled
by the NULL notation.
User integrity extends the existing data modeling
techniques by adding additional requirements for the
data based on the specific domain of the used system.
Referential integrity deals with the primary and
foreign keys denoted by the relationships between the
entities. In principle, a foreign key can reference either
a primary key or any unique index. It can also hold an
undefined (NULL) value in case of using an optional
relationship type of the non-identifying relationship.

Entity integrity focuses on the unique table
identification by the primary key, which consists of
the set of attributes that are unique as a value set and
minimal, so the references are effective.
Domain integrity deals with the data types and other
constraints limiting the available list of values to be
used. It can be supervised by the check constraints at
the data model layer or trigger associated with the
table can be used to secure the operation value during
the change (Insert or Update statements).

The integrity of the system is covered by the transactions,
which transform the database from one consistent state to
another by checking the integrity rules. Thus, after approving
the transaction, all rules must be applied. Otherwise, the
transaction is refused by rolling back all the changes executed
inside. Transaction in a relational database is maintained by
logging in the UNDO and REDO structures, mostly
highlighting the data change vectors. Therefore, the
transaction can be reverted by such data. Moreover, building
a consistent image is relevant, as well. Whereas the REDO is
stored physically, after the instance failure, it is possible to
reconstruct the database easily [6] [10] [13].

The data amount to be covered in the database layer has
grown dynamically, and the progress is still enhanced. It
results in several facts to be stated. Firstly, there are several
architectures splitting the workload to multiple nodes by
applying parallelism. Such techniques are also used to ensure
availability. Therefore, there are numerous instances, usually
physically dislocated to server the workload dynamically or
by applying the stand-by mode.

Oracle database, which is also used for performance
evaluation, uses single and multitenant architectures. The
single-tenant approach was introduced in 1988 and was used
until 2012. Oracle 12c introduced a multi-tenant container
database containing Control file, Parameter files, Logs, and
Metadata. Pluggable database is mounted dynamically on
demand. It consists of the data files [5].

In 2017, sharded database architecture was proposed by
managing connection pools by the shard directions. Sharded
database is formed by multiple database servers – instance, as
well as the database. It provides robust scalability, fault
tolerance by geographic data distribution opportunity [11]
[16].

The mission of this paper is to deal with the performance
of the system, focusing on the undefined tuple states or the
individual attributes.

As evident, performance and availability are part of
multiple spheres, starting with the physical architecture,
partitioning, and data distribution up to physical
infrastructure delimited by the block size and storage
perspective.

In this paper, the main focus is done on the column
integrity, and associated performance impacts related to the
data processing and retrieval. Namely, NULL values can
form a significant performance gateway. Firstly, undefined
values cannot be mathematically compared. Any such
operation results in getting NULL value as a result forming
three-valued logics instead of binary (true and false).
Secondly, NULL values cannot be directly sorted, so such
value categorization inside the index is problematic. By
applying B+tree indexing, undefined values are not part of
that due to the comparison unavailability. As a consequence,
locating undefined values requires sequential data scanning
instead of index usage. And finally, although a particular
value is not present, the value is often only partially
undefined – it can be partially evaluated by the neighbor
states. For the undefined validity, it is clear that such time has
not been reached yet. Thus, although the particular time point
value is not present, it is evident that it will occur in the future
(if ever).

Although NULL values do not generally require additional
storage capacity for the management, evaluation and data
identification and retrieval can be demanding. Therefore, the
DEFAULT option for a particular attribute often replaces
NULL values. In this paper, there is a summary of existing
approaches by focusing on the limitations. Then, the own
solution using pointer referenced is introduced, supervised by
the computational study.

Performance and storage perspective evaluations are done
using the Oracle database system. The reason is related to the
robustness of such a system providing the most complex
features. Moreover, the implementation is covered by
the CodeIn [17] and BeeApex [16] projects, which are
devoted to the Oracle database system. However, the
proposed solution is general and applicable to any database
system and approach.

The paper is structured as follows. Section 2 deals with the
current techniques for replacing an undefined value by the
default option, focusing on the evolution and DEFAULT ON
NULL clause. It supervises the process of data insertion and
change management (Insert and Update operation). Section 3
focuses on the data retrieval by identifying and locating
undefined value, which should be preferably done by the
index. However, undefined values are not commonly part of
the indexing. Transformation using the default value can
bring the power and relevant solution. However, it brings
additional storage demands compared to the NULL itself.

Therefore, the own solution is proposed by locating
undefinition in the B+tree directly. Reflecting on the
performance study, proposed B+tree enhancements can bring
significant power by limiting sequential block scanning
necessity. It is covered by section 4.

Finally, section 5 deals with the computational study
focusing on the time processing of the data loading and
retrieval process, supervised by the total storage demands.

II. IDENTIFYING AND REPLACING UNDEFINED STATES – STATE

OF THE ART

Undefined values are commonly modeled by the NULL
notation. It does not require additional storage and is
physically represented either by null, <null>, (null), or empty
string can be used to visualize such component. The NULL
value is considered as a marker of mission information but

L R L and R L or R not L
TRUE TRUE TRUE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE TRUE
NULL TRUE NULL TRUE NULL
NULL FALSE FALSE NULL NULL
NULL NULL NULL NULL NULL

Figure 1. Three-valued logic

can also be used in case the value is not applicable. The sense
of the NULL is not covered by any data type. The common
representation is used across all domains.

Although NULL values do not require storage for the
representation, they are hard for processing in the conditions.
Arithmetical operations cannot be applied for NULL values
resulting in getting NULL, which can significantly affect the
conditional processing. Thus, the original bivalent
representation (TRUE / FALSE) must be extended to cover
the undefined value logic, forming a three-value mode. Fig. 1
shows the OR, AND, and NOT operations applied on 3-value
logic. As evident, the NULL value is specific, and negation
cannot be applied. Namely, the negation of the NULL is still
NULL [7] [14].

The core solution limiting non-present value is protected
by the default option associated with the attribute. It is
applied if the value is not stated. Thanks to that, undefined
values are not present, which can even be forced by the
column integrity constraint – NOT NULL. Thus, the attribute
specification of the table is extended by the DEFAULT
clause, like [2] [3] [5]:

create table sensor_tab_exp
(id integer,
 date_val date ,
 value integer);

Default value specification can be either constant value or

delimited by the function result. Since Oracle 12c version was
introduced in 2012, it is possible to reference sequence
pseudocolumns CURRVAL and NEXTVAL:

create table sensor_tab_exp
(id integer ,
 date_val date default sysdate,
 value integer default 1);

Based on [5], referencing sequence in the default option
has some limiting factors to be highlighted. Firstly, the
sequence must exist during the table definition. Hence, the
owner must have the Select privilege on it. Secondly, any
Insert operation fails if the sequence is dropped in the
meantime. Thirdly, users performing the Insert operation
must have sequence reference Select privilege, as well.
Finally, by using sequences, gaps can be identified due to
caching or rolling back the transaction. Any value request
means the potential usage. Thus, the sequence cannot be
shifted backward.

In the past, default values were applied only if the
particular attribute value was not stated. Thus, it did not

secure undefined values properly. Namely, if the NULL value
was defined explicitly, the default value option was not
applied, resulting in raising an exception if the NOT NULL
constraint was associated with such column:

create table sensor_tab_exp
(id integer ,
 date_val date default sysdate,
 value integer default 1);

insert into sensor_tab_exp(value)
 values(null);

select count(*)
 from sensor_tab_exp
 where value is null; ==> 1

The previous section used default values only if the

column is not explicitly referenced. Oracle 12c has
introduced the default option extension by focusing on the
NULL values stated explicitly – DEFAULT ON NULL
enhancement. Therefore, even though the value is stated
explicitly, the default option can be applied if the particular
value is undefined, represented by the NULL value [5].

create table sensor_tab_exp
(id integer default seq_id.nextval,
 date_val date default sysdate,
 value integer 1);

insert into sensor_tab_exp(value) values(null);

select count(*)
 from sensor_tab_exp
 where value is null; ==> 0

Above stated represents the final solution limiting

undefined values in the relational systems, delimited by the
default option management, which is robust and can cover
any conditional transformation.

The different stream dealing with the undefined value that
can be used across the database system versions is a trigger.
It can be associated with any data manipulation operation.
Oracle database can group multiple operations on one table
to the common block. The function usually encapsulates it in
other systems, which is called for each operation. One way or
another, trigger definition is more powerful by referencing
the state to be operated using the NEW record of the trigger.
An analogous solution dealing with the default value is stated
in the following code block [12] [15].

create or replace trigger trig_null
 before insert on sensor_tab_exp
 for each row
 begin
 if :new.date_val is null
 then :new.date_val:=sysdate;
 end if;
 if :new.value is null
 then :new.value:=1;
 end if;
 end;

 In the performance evaluation section, individual
approaches are compared reflecting the time cost demands
and the storage demands. It is evident that the physical value
transformation brings additional storage demands based on
the used data type. Compared to the NULL, which can be
used generally for any data type, and it does not require
storage capacity at all.

By using physical transformation, particular values can be
part of the indexing, and the data retrieval process is easy and
straightforward, limiting the sequential block necessity.

III. INDEXING

The database index forms a robust access model during the
data retrieval process. Instead of sequential scanning of all
associated blocks, traversing across the index can be used to
locate relevant data portions. A typical structure used in
database systems is B+tree [4] [8] [9], which is always
balanced, and the leaf layer blocks are sorted based on the
index key. The reference to the database layer is done by the
address pointers specifying the data file, data block, and
position of the row inside the block (ROWID). Thus, the data
retrieval process is delimited by two stages. Firstly, the index
access path extracts individual ROWIDs, which pass the
defined query conditions. Secondly, the Table Access by
Index Rowid method is used, which takes the ROWID set
from the previous step and loads particular blocks into the
instance memory for the evaluation. Such a process is
typically significantly cheaper and more efficient than the
sequential scanning – Table Access Full (TAF). Namely, the
TAF method can degrade if the data block fragmentation is
used or dynamic data update operations are present, resulting
in storing a partially free block set.

In the B+tree indexes, the mathematical operations do the
traverse path. However, they cannot cover undefined values,
resulting in refusing NULL values part of the B+tree
indexing. Thus, if the query references an attribute that can
hold undefined value, B+tree index is not used to shift the
processing to the TAF method, which can be really
demanding. Therefore, undefined value transformation
brings sufficient power, whereas NULLs are not present in
the system. On the other hand, physical value transformation
requires additional capacity for block storage.

Another solution is formed by the function-based index
[4], by which the negatives can be limited. Undefined values
can be directly physically placed in the database, while during
the retrieval, they are transformed to the required form using
the function result. Thus, the index does not cover the pure
attributes, but they are enclosed by the function calls, which
results are part of the index. The particular function must be
deterministic. Concluding the function-based index
definition, it provides a robust solution by limiting additional
database storage demands, the transformation is done
dynamically, and the index stores such results. However, also
this technique brings some negative aspects. Firstly, function
transformation extends the processing time of the index
management covered by the Insert operation, whereas the
function result must be calculated before processing and
referencing the tuple by the index. Secondly, the defined
function must be robust and distribute the data as uniformly
as possible, removing the data cluster potential. And thirdly,
that function must be explicitly and precisely used and

referenced in the query. Otherwise, the index will not be used.
Thus, it is not enough to refer to the source attribute itself.

Focusing on the performance and existing functionality, it
is clear that there are two streams, either by limiting NULL
values supervised by the default option or trigger (in that
case, additional storage demands are present), or
transformation is done via the index. However, it requires
functional coverage by the query. Therefore, although the
translation profile can do it, it can be non-reliable, influencing
the original statement.

Therefore, specific B+tree enhancements are proposed in
the following section to cover undefined values in the indexes
as a particular module. It combines both approaches by
reaching optimized solutions, emphasizing the storage
demands and capacity, but mostly performance is ensured.

IV. PROPOSED SOLUTION

The proposed solution extends the B+tree definition by
focusing on undefined value management. Therefore, from
the storage perspective, original NULL values are treated,
limiting the additional storage demands. However, for the
purposes of the index, dynamic transformation is done to
reflect the index structure. The first proposed solution
() extends the leaf layer of the index by the external
module referencing undefined representations of the index
key values. Such a module is placed either in the leftmost or
rightmost part. The limitation of that solution is reflected by
the path traversing necessity to locate undefined states. The
different solution () locates undefined state module
reference just to the root node so that they can be directly
accessed.

Using the above solutions, undefined values are not
categorized by placing them into a common structure using
the NULL transformation. Fig. 2 shows the architecture of the
proposed SOL2. Internally, whereas the NULL values cannot
be mathematically compared, individual references are then
stored in a linear linked list with no specific order. As a result,
to obtain and locate undefined states, a particular external
module must be fully scanned. As evident, if the number of
(partially) undefined states is high, the proposed solution can
be too demanding, even degrading the performance up to
original sequential block scanning. Notice that the external
module must be memory-loaded in the first phase, followed
by the extraction process. Then, the ROWID values are
obtained, forcing the system to load the blocks into the
memory Buffer cache for the consecutive processing and
evaluation. If the size of the external module is large, almost
all table-associated blocks need to be processed. However,
the processing itself is preceded by the index management
itself.

12 ROWID

44 ROWID

56 ROWID

150

250 613

93 ROWID

96 ROWID

121 ROWID

123 ROWID

197 ROWID

222 ROWID

253 ROWID

254 ROWID

255 ROWID

697 ROWID

714 ROWID

949 ROWID

75

NULL management module

Database
storage
mapper

Database
blocks

Figure 2. SOL2 architecture – NULL management module

Therefore, the third solution () uses another
approach. Instead of using a linked list with no sorting
(ordering) criterion, the Referencer module using B+tree is
used. The primary key secures the order of individual
elements placed there. A relational database requires each
table to have the primary key for the tuple identification. It is
delimited by the unique constraint, as well as the NOT NULL
value for each element. The set for the primary key definition
can consist of multiple attributes (composite primary key) but
should be minimal to ensure performance. Thus, a unique
constraint would be lost if any element was removed from the
primary key attribute set.

For the proposed third solution (SOL3), the index key
differs from the Referencer module state identification.
Therefore, it can be said that the global solution uses the
index inside the index.

The difference between the External and Referencer
modules is based on the internal structure. The external
module uses a linked list, whereas the Referencer module
uses the index, mostly composed of the B+tree.

A. Referencer module sharing

External or Referencer modules can benefit from the fact
that they are only logically interconnected with the index
itself. The association is done by the pointer to the particular
storage elements, mostly mirroring the root node or the first
node, generally. Therefore, multiple indexes can share a
common structure without specifying their own. Thanks to
that, particular External or Referencer modules are typically
already loaded in the instance memory, so the loading
operation does not need to be present. It is a precise
consequence of such structure sharing. Frequent accesses to
these structures keep them in the memory. Even if the
memory needs to be freed, reloading will only be a matter of
time. In addition, it is still there, at least partially.

Global sharing

In common conditions and environment, the index covers
all the data tuples. Thus, the added modules can be
completely shared. So, even if several indexes are present in
the system for the specific table, the External or Referencer
modules are added just once. Statement evaluation and
parsing process are listed in fig. 3. In the Parse operation, data
access method is selected based on the optimization and
statistics. Bind applies dynamic conditions. Execute and
Fetch provide the process of retrieval and result set
composition.

Whereas the transaction can be approved only after
applying changes to the whole index set to ensure reliability
and consistency, it is strongly recommended to use the post-
indexing layer, by which several change operations can be
grouped and applied at the same time [7] [8].

PARSE BIND EXECUTE FETCH

OPEN

CLOSE

 EXTERNAL MODULE

Figure 3. Statement execution process

Partial sharing

By moving the processing to the temporal sphere,
multiple structure enhancements can be present to monitor
and ensure performance. Namely, current valid states have
the highest priority, which is consecutively lowered over the
time flow. Thus, historical values are gradually losing their
importance, which is reflected by the index sets, as well.
From the architecture point of view, techniques of data
distribution [5], partitioning [4] [11], stand-by types [5], or
warehouses [9] are present. As a result, individual indexes are
local and point only to the data subset. E.g., one partition
reference only the current valid state, while the historical
images are separated by the expiration date. Each partition
can have own index to ensure parallel access, identification,
and processing. Therefore, global sharing of the External or
Referencer module is not applicable.

There are two options available, either total unsharing
or just partial sharing. Partial sharing is more convenient and
preferable. At least some data demands on the index layer can
be reduced. In that case, the module itself is extended by the
shared and own local data, which can be identified and
processed separately, but still in parallel. Thus, three separate
structures can be identified:

index with defined values (mostly modeled by the
B+tree index structure),
local pointers to the undefined data states,
shared modules (External / Reference).

B. Undefined state categorization

In the above section, there was a discussion related to the
undefined value management and transformation. The aim is
to ensure indexing possibilities. However, undefined states or
individual attribute values themselves can originate from
various sources – non-applicable value, value not known,
non-reliable value occurrence, value out of range, delayed
value, etc. Thus, the next step is to provide categorization
opportunities. Input values are evaluated by extracting NULL
values, which are then categorized and indexed.
Categorization can be applied in both structures – The
external module, as well as Referencer module. For the
purposes of the performance evaluation, we will focus only
on the indexing, which allows traverse opportunity and
reflect performance aspects.

Multi-tree

The first proposed solution is done by the multitree index,
formed by two layers. The first layer deals with the
categorization, which can be formed either by the linked list
() or B+tree can be used (). In that case, the
traverse is done by priority, so the most relevant sources can
be obtained sooner. Regarding the [9], it can lower demands
for the huge data sources. Vice versa, if the data source size
is not extremely large, performance impacts are minimal and
do not provide significant benefits.

The second layer consists of the B+tree for each
undefinition source type. A particular solution is optimal if
the user wants to query data based on the categorization. On
the other hand, if specific objects are to be referenced, they
can be spread across multiple indexes, which must be scanned
either sequentially or in parallel.

Fig. 4 shows the architecture of the multi-tree index.

12 ROWID

44 ROWID

56 ROWID

150

250 613

93 ROWID

96 ROWID

121 ROWID

123 ROWID

197 ROWID

222 ROWID

253 ROWID

254 ROWID

255 ROWID

75

MULTI-INDEX TREE

CATEGORIZATION

NULL DATA
REFERENCE

Figure 4. Multi-index tree

Bitmap

The limitation of the B+tree indexing inside the Referencer
module is just the mapping association, which must always
be 1:1. Namely, the origin of the undefinition must be part of
one category only.

In the real environment, the assignment can be done to
multiple categories, like delayed and inconsistent data
simultaneously. However, to ensure robustness, each
relational database tuple should be present in the system only
once. But by capturing multiple undefinition categories, a
particular tuple would be part of numerous indexes violating
the integrity.

Therefore, the proposed uses a bitmap index to
create the Referencer module. Individual rows inside the
index are sorted based on the primary key as the index rule.
Bivalent variables are expressing the undefinition category
assignment. Thanks to that, each tuple can be part of multiple
categories. Identification is made by applying superfast
conditions, so the processing and evaluation are
straightforward and performant. Adding a new undefinition
type is straightforward. It requires adding one column to the
bitmapper. By default, a particular type is not used for the
existing tuples:

Alter
 <table_name>
 add <description>
 [default {0 | 1}];

Type reference

The last solution () uses a reverted approach,
Referencer module is formed just by one index, and
individual categories are located on the leaf layer for each
date tuple. Categorization association is modeled either by
the linked-list () or B+tree (). Each leaf layer
element points to the data storage (ROWID) but also to the
undefinition category – NULL_category module. Mapping is
one-to-many so that each node tuple can be associated with
multiple categories complicating the architecture.

Regarding the optimization techniques, it can be easier to
create the list of all possible values and reference the code
representation itself ().

V. PERFORMANCE STUDY

Performance evaluation has been executed using Oracle
Database 19c Enterprise Edition (Release 19.0.0.0.0 –
Production) with the following server parameters: processing
unit: Intel Xeon E5620; 2,4GHz (8 cores), operation
memory: 16GB, SSD drive: 1 000GB.

The database consisted of the spatio-temporal data locating
and identifying airplane objects by the occurrence time, GPS
position, as well as other parameters – speed, destination,

Figure 5. Data tuples

current airspace association (entry and exit time), planned
route vs. current route, as well as the weather conditions
influencing the flight itself. There were 20 attributes. Each
state has begun and end point of the validity (entry and exit
time). There are 1 808 390 data tuples in total. Examples of
the data are in fig. 5.

Undefined states were originated from the sensor failure,
non-reliable communication network, and processing delays.

A performance evaluation study can be divided into two
experiments. The first part deals with state-of-the-art
managing physical transformations using the trigger and
default option. The second part emphasizes the indexing,
focusing on the proposed methods and architectures.

A. Performance study - physical transformation

For evaluating costs and processing time demands of the
physical transformation, the following models were used.
The reference system (M0) requires no transformation,
whereas undefined values are not present at all. The aim is to
point to the additional demands covered by the identification
and processing. On the other hand, the current attribute value
requires storage capacity and operations of the loading and
block allocation:

– no-undefined values present (Referencer model).
– undefined data caused by the time delays of the input

data.
– data set is provided at the required time, but the data

quality is not suitable due to a communication channel or
broken sensor.

– this data model is associated with processing delays,
as well as non-reliable data processing. Thus, the NULL
value can be categorized into two segments.

Tab. 1 shows the processing time demands (expressed in
seconds). Undefined states are not explicitly identified nor
transformed. For the processing, 100 000 row tuples were
associated with the undefined state (NULL). NULL values
have no size demand reaching the reduction in the block
allocation and I/O operations. Based on the reached results,
data types of the undefinition do not play a significant role.
Results of the M1 and M2 are analogous. In the first case,
time validity is not present, whereas M2 is delimited by
missing GPS positions. Compared to M3, both undefined
values are present, getting 51.36% reduction of the total
processing time costs (M0), 43.22% for M1, and 44.84% for
M2.

TABLE I. RESULTS – NO TRANSFORMATION

17.409 14.915 15.352 8.468

TABLE II. RESULTS – PURE DEFAULT

18.101 15.024 15.431 8.512

The second evaluation stream in this category is associated
with the Pure default. The undefined state can be defined
explicitly by the NULL, which is, however, not transformed
using pure default. In total, 50 000 rows were defined
explicitly, while the rest 50 000 rows do not state the value.
Tab. 2 shows the results. As evident, there is no significant
difference between the previous solutions. Thus, extending
the solution by default option does not bring significant
additional evaluation costs:

M0 3.97%
M1 0.73%
M2 0.51%
M3 0,52%

In the case of using the Default on NULL option, all
undefined values are identified and transformed using
predefined values. The performance varies on the used
model, ranging from the 4,08% improvement up to 2.60%
slowdown (processing time costs). Tab. 3 shows the
processing time demands using the Default on NULL option.

Introduced Default on NULL option in oracle 12c is
powerful and can transform undefined values defined
explicitly, as well as non-present data themselves. A similar
solution obtained requires trigger firing for each tagged data
row. As evident, it requires high additional costs. Namely, for
one undefined sphere management, compared to the Default
on NULL option, additional demands are 47,04% (M1) and
22,44% (M2). If two undefinition categories are maintained,
the reached difference is even sharper – 81,14%. The reason
is the trigger firing necessity. Firstly, the trigger execution
code in a parsed form must be instance loaded and associated
with each changed operation, preceded by the NULL value
identification. Finally, the data row record is enhanced by the
transformation and processed. Tab. 4 shows the results for
trigger management.

Grouped results in a graphical form are in fig. 6.
Default on NULL provides sufficient power if available

in the database system version. If not, a trigger must be used,
but additional processing time demands can range up to 80%.

TABLE III. RESULTS – DEFAULT ON NULL

17.362 15.019 15.212 8.733

TABLE IV. RESULTS – TRIGGER

20.488 22.084 18.626 16.081

Figure 6. Processing time demands

Although limiting undefined values can be powerful in terms
of processing and demands, storage capacity has to be
extended based on the data type associated with the undefined
value attribute. For date and positional values, original
storage demands are 25600 KB. Transformation requires
49152 KB in total. 8 KB block was used.

B. Performance study – dynamic index management

Input stream transformation offers a robust solution, but
brings additional demands. Instead of a NULL definition, a
specific value is stored. It can even be problematic to identify
such value if the domain is unlimited. E.g. if the value can be
any integer, an undefined value cannot be transformed,
whereas it would not be possible to distinguish between the
original and transformed value. The second evaluation stream
deals with indexing and focuses on the structures managing
undefined values. does not cover undefined values,
therefore, sequential block scanning must be done. It is used
for reference. locates the External module on the leaf
layer of the B+tree index, whereas points to it directly
from the root. Undefined values can be sorted for easier
identification and location, therefore, uses the
principle of sorting data based on the primary key, which
should always be present.

 and use multi-tree index approach, shaped
by the linked-list () or B+tree () is used
internally. Bitmap index categorization is done in .

Finally, reference list categorization can be supervised
either by linked-list () or B+tree (). As
evident, these approaches do not benefit, whereas they are not
dynamic. By adding a new undefinition element, the whole
index must be reconstructed, marking the original type as
invalid.

Tab. 5 shows the results in terms of processing time of the
data retrieval and total costs of the operation.

SOL0 does not manage NULL values inside the index
reaching sequential block scanning necessity (Table Access
Full). The problem arises if the blocks are fragmented, or
even empty blocks are present. In that case, even such blocks
need to be memory-loaded, so the efficiency of the whole
solution is getting worse and worse. SOL1, SOL2, and SOL3
form a specific category dealing with the External modules
with no particular format. The emphasis is done on the
location of such module inside the index. Traversing across
the index requires 0,16s, which represents 3.88%. The second
category delimits multi-tree index structures (SOL4a and
SOL4b). Specific primary key sorting allows faster location.
Instead of the structure searching, traverse activity can be
done, reducing the demands up to 0.27s (7,48%).

TABLE V. DYNAMIC INDEX MANAGEMENT - PROCESSING TIME AND
COSTS

38.21 103
4.28 19
4.12 18
3.93 16
3.88 15
3.61 15
3.37 14
4.44 19
4.37 19

Moreover, multi-index can cover several undefinition
categories. The one-to-many mapping can be done.
Compared to the SOL3, even better performance can be
reached, whereas the evaluation can be done in parallel – for
each category, one extra slave scanning process can be
assigned. Reference lists are not relevant. They cannot extend
the structure without rebuilding the particular reference list is
placed for each node making the management hard to
maintain.

The solutions have been tested using Oracle 19c database
system. However, whereas they are based on the B+tree index
structure, which is part on any database system, proposed
techniques are universal and generally applicable.

VI. CONCLUSIONS

Dealing with data management requires accessing and
maintaining individual states with regard to reliability and
integrity. Relational database transaction ensures the shift
from one consistent state to another consistent. Data input can
be influenced by various factors resulting in delays or getting
data out of the range. When dealing with the sensor-based
network, the problem can be even sharper due to wireless
infidelity or outages. It results in getting undefined values,
mostly modeled by the NULL notation. Although such an
approach is suitable in terms of database storage demands,
performance can degrade due to the inability to use the index.
The existing solutions dealing with the undefined values or
whole states are based on transformation in the physical layer.
It is done by the trigger or default value used in the case of
non-present data. As a result, NULL values are not present at
all. Thus, the index can benefit by improving the overall data
retrieval performance. On the other hand, physical
transformation increases the storage capacity demands. If the
data types are complex, additional requirements can range
significantly. Another existing perspective is associated with
the function-based index, which limits undefined values in a
logical layer. However, the disadvantage is that it is necessary
to use this function also in the query. Otherwise, index cannot
be used.

Our proposed solution interconnects both principles by
introducing a specific module associated with the index, by
which the undefined values can be covered. Sortability is
ensured by the primary key or the linear linked list is used
with no specific order. Thanks to that, original NULL values
can be directly stored and indexed. Discussed solutions can
also manage undefined value categorization by multiple
architectures.

In the future, we would like to emphasize the data
distribution and various database instance architectures
mirroring and fragmenting data. Physical infrastructure in
terms of data block size will also be the object of interest. It
is assumed that various block size can significantly influence
the performance - data loading, as well as the capacity and
evaluation process. Moreover, by grouping individual states
into categories physically located in the same segment can
bring additional power correlating the neighborhood.

ACKNOWLEDGMENT

This publication was realized with support of Operational
Program Integrated Infrastructure 2014 - 2020 of the project:
Intelligent operating and processing systems for UAVs, code ITMS

313011V422, co-financed by the European Regional Development
Fund.

It was partially supported by the Erasmus+ projects:

Project number: 2022-1-SK01-KA220-HED-000089149,
Project title: Including EVERyone in GREEN Data
Analysis.
Project number: 2020-1-HR01-KA226-HE-094713, Project
title: Cloud cOmputing for Digital Education Innovation.
Project number: 2021-1-SI01-KA220-HED-000032218,
Project title: Better Employability for Everyone with APEX.

REFERENCES
[1] J. Delplanque, A. Etien, N. Anquetil, and O. Auverlot, “Relational

database schema evolution: An industrial case study,” IEEE
International Conference on Software Maintenance and Evolution,
ICSME 2018, Spain, 2018, pp. 635-644

[2] A. Dudáš, J. Škrinárová, and E. Vesel, “Optimization design for
parallel coloring of a set of graphs in the High-Performance
Computing, “ Proceedings of 2019 IEEE 15th International Scientific
Conference on Informatics. pp 93-99. ISBN 978-1-7281-3178-8.

[3] D. Jin, G. Chen, W. Hao, and L. Bin, “Whole Database Retrieval
Method of General Relational Database Based on Lucene,”
Proceedings of 2020 IEEE International Conference on Artificial
Intelligence and Computer Applications, ICAICA 2020. 1277–1279
(2020). https://doi.org/10.1109/ICAICA50127.2020.9182496

[4] H. Kriegel, P., Kunath, M. Pfeifle, and M., Renz, “Acceleration of
relational index structures based on statistics, “ 15th International
Conference on Scientific and Statistical Database Management, 2003

[5] D. Kuhn and T. Kyte, Expert Oracle Database Architecture:
Techniques and Solutions for High Performance and Producitivity.
Apress, 2021, ISBN – 9781484274989

[6] D. Kuhn and T. Kyte, Oracle Database Transactions and Locking
Revealed. Oracle Database Transactions and Locking Revealed.
Apress, 2021. https://doi.org/10.1007/978-1-4842-6425-6

[7] M. Kvet, “Managing, locating and evaluating undefined values in
relational databases”. Conference ICITS 2021. February 2020.

[8] M. Kvet and M. Kvet, “Relational pre-indexing layer supervised by the
DB-index-consolidator background process”. Conference of Open
Innovation Association, FRUCT. 2021-January, (2021).

[9] M. Lorenzini, W. Kim, and A.Ajoudani, “An Online Multi-Index
Approach to Human Ergonomics Assessment in the Workplace,” IEEE
Transactions on Human-Machine Systems. (2022).
https://doi.org/10.1109/THMS.2021.3133807

[10] G. Mirza, “Null Value Conflict: Formal Definition and Resolution,”
13th International Conference on Frontiers of Information Technology
(FIT), 2015.

[11] S. Pendse, V. Krishnaswamy, et al., “Oracle Database In-Memory on
Active Data Guard: Real-time Analytics on a Standby Database”, 2020
IEEE 36th International Conference on Data Engineering (ICDE), 20-
24 April 2020

[12] O. Rolik, K. Ulianytska, M. Khmeliuk, V. Khmeliuk, U. Kolomiiets,
“Increase Efficiency of Relational Databases Using Instruments of
Second Normal Form”, 221–225 (2022).
https://doi.org/10.1109/ATIT54053.2021.9678605

[13] W. Schreiner, W., Steingartner, W. and V. Novitzká, V, “A Novel
Categorical Approach to Semantics of Relational First-Order Logic”,
Symmetry-Basel, Vol. 12, No. 10, MDPI, OCT 2020,
doi: 10.3390/sym12101584

[14] W. Steingartner, J. Eged, D. Radakovic, V. Novitzka, “Some
innovations of teaching the course on Data structures and algorithms, ”
In 15th International Scientific Conference on Informatics, 2019.

[15] R. Wang, B. Salzberg, D. Lomet, “Transaction support for log-based
middleware server recovery,” Proceedings - International Conference
on Data Engineering. 353–356 (2009).
https://doi.org/10.1109/ICDE.2009.45

[16] R. Leskovar, et al. “Erasmus+ project Better Employability for
everyone with APEX.” https://beeapex.eu/ (accessed Aug. 1, 2022)

[17] F. Urem, et al. “Erasmus+ project Cloud cOmputing for Digital
Education Innovation. “https://code-in.org/ (accessed Aug. 1, 2022)

