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Abstract— Currently, it is important to store the whole 

evolution of the object states by referencing the validity time 

frame. Temporal databases are inseparable parts of intelligent 

information systems. Temporal spheres are mostly referring 

validity expressed by the start and end timepoints. To ensure 

performance, database indexes are created by sorting the 

validity of the states for each object. However, to monitor the 

evolution in industry monthly, daily, weekly, or annually, the 

standard conventional index is not suitable. In this paper, 

temporal architectures are summarized, pointing to the 

temporal spheres. It mostly emphasizes indexing, focusing on 

the proposed bi-index combining bitmap and B+tree structure 

to the common index. Thanks to that, evolution monitoring for 

the specified time range can be significantly improved.  

Keywords— temporal database; performance; indexing; 

temporal elements; monitoring 

I. INTRODUCTION 

Database storage and overall database technology are 

inseparable parts of the current information systems forming 

the interlayer between applications and storage perspectives. 

There are many types used currently. Although relational 

databases were first introduced in 60ties of the 20th century, 

they are still very often used nowadays, whereas they require 

precise structure delimited by constraints and overall 

integrity. Relational databases are formed by the entities and 

relationships between them. The data access is based on 

relational algebra operations. These operations are part of the 

execution plan of the query, selected by the database 

optimizer. Generally, the access is done either through the 

developed indexes or sequential data block scanning is 

necessary to be performed – if no suitable index is present or 

the estimated costs using the index are higher than sequential 

data block scanning [1] [12]. When dealing with the data 

warehousing and analytics based on the large data set, 

performance differences can be significant and overall 

management should always point to the proper index 

definition and maintenance.  

From the physical perspective, a database is formed by the 

segment [3], which specifies the structure and general 

conditions. It also points to the data blocks, which are not, 

however, created separately, instead, the extents are 

allocated. Each extent is then represented by the fixed size set 

of the blocks, generally having 8 blocks. Multiple extents are 

grouped together forming a linked list. Thus, sequential 

scanning requires block-by-block memory loading, 

evaluation, and relevant data tuples extraction. The limitation 

of that method is just the data block fragmentation and 

dynamic operations, which can even free data blocks. 

However, such blocks are not specifically marked and must 

be treated during the data retrieval block evaluation.  

 In the past, relational databases were focusing on storing 

current valid states by replacing original values [14]. Thus, 

there was no history stored in the system. Although change 

vectors were part of the transaction logs, it was too difficult, 

but mostly time demanding to obtain states valid in the 

defined time interval.  

During the evolution, the temporal paradigm has been 

introduced, forced mostly by the industrial environment.  It 

was primarily was based on storing states of the objects, 

framed by the temporal spheres, validity, transaction time 

reference, etc. Thanks to that, any state could be identified, 

and state evolution could be easily monitored and retrieved 

[16]. The database systems were shifted to the cloud 

environment allowing to manage, maintain and store huge 

data sets very efficiently [7] [11], respecting the ability to 

reconstruct the data. The main advantage of the Oracle Cloud 

is just the autonomous aspect of the databases, as well as the 

auto-indexing option [13] [17] [18]. Autonomous data 

warehouses and data lakes strongly require sophisticated 

access methods ensuring performance.  

The performance of the querying is strongly associated and 

supported by the database indexes, by which the relevant data 

row addresses can be identified. Typically, B+tree indexes 

are used in relational databases. Such a premise has been 

applied by temporal processing, too. The validity of the data 

tuple can be part of the index key, sorting the states in a 

timeline.  

The proposed solution is primarily intended for the Oracle 

database technology, which is a bit specific. Namely, the Date 

data type consists of the second precision frame and no other 

granularities are applicable, compared to, for example, 

MySQL database, which applies Date, Time, and DateTime 

data types for storing various precisions and granularities. As 

a result, for database indexing, temporal value is stored 

directly, limiting the opportunity to extract individual 

elements from the Date value (year, month, week, day, hour, 

etc.) consequencing in defining a function-based index, by 

which individual elements can be indexed or by requesting 

sequential data scanning. For the conventional index, data are 

sorted based on validity, not individual elements. On the 

other hand, a function-based index requires additional disc 

storage capacity. Moreover, there can be issues related to the 

integrity of the values, whereas duplicate tuples would be 

present.  

This paper aims to define bi-index, by which individual 

elements can be extracted to the separate index structure. The 

architecture is based on using two index types, interconnected 

by the logical addresses – IndexIDs. By using the proposed 

index solution, particular temporal values can be sorted based 

on any temporal element, allowing you to monitor evolution 

based on any precision, range, or element. As evaluated in the 



computational study, general sensor monitoring applied in 

any environment (transport, medicine, industry, etc. ) can 

significantly benefit, whereas the proposed solution gets new 

unique method for the relevant data identification.  

The structure of the paper is organized as follows: Section 

2 deals with the temporal paradigm by summarizing existing 

temporal models. Section 3 deals with the indexing providing 

capability for the data retrieval process. Section 4 deals with 

the Oracle Date storage principles and element management 

by pointing to the limitations of the function-based indexes. 

Section 5 deals with the proposed solution, which is 

consecutively performance evaluated in section 6.  

II. TEMPORAL PARADIGM AND MODELS 

The first attempts to develop temporal databases are dated 

to the 70ties of the 20th century, related to the relational 

database evolution. It was very clear very soon, that 

conventional databases storing only current valid states are 

not suitable for the complexity. Sooner or later, individual 

state evolution would be necessary to be used, modeled, and 

highlighted. In these terms, the object identifier is critical. 

The primary key is used as a unique and inseparable set of 

attributes offering unambiguous state definitions for the 

table. It is commonly formed by the ID or composite 

definition can be used, as well [4] [9] [17]. One way or 

another, the primary key was considered as a milestone for 

temporal evolution. Namely, in the first phases, the core 

solution was based on an object identifier, extended by the 

validity time frame forming a composite primary key. The 

limitation was related to efficiency, whereas each change 

automatically requested storing a new state completely. As a 

result, individual data changes had to be synchronized, 

otherwise, there would be many duplicates. Moreover, it was 

difficult to identify real change. Namely, if the value 

changed, it did not have to be a real change. The important 

element was just the accuracy of the measurement, 

measurement errors, and data availability. Therefore, the 

architecture of the object-oriented approach was 

cumbersome, inefficient, and too demanding for the real-

world management and reliability of the data stored in that 

structure. 

The opposite granularity solution was introduced in 2013 

by focusing on individual attributes. Thus, each change was 

associated with the attributes, not the whole state. To get the 

image valid at a defined timepoint, the composition of 

individual attributes was necessary to be done. On the one 

hand, it brought efficiency from the point of view of data 

storage but added a deficiency caused by the creation of a 

complex state over time [14] [16].  

The most suitable solution for applying any update 

operation frequency for individual attributes is formed by the 

group-level temporal architecture. The synchronization 

group aims to manage multiple attributes as a single set if the 

changes are synchronized. Thus, efficiency is ensured from 

the storage perspective [17]. Moreover, building data image 

at a defined timepoint is less demanding. The synchronization 

group is defined by the temporal layer or the data dictionary 

can be used as a repository. One way or another, each group 

is temporarily oriented and is composed, rebuilt, or dropped 

dynamically based on the defined conditions ensuring overall 

performance [17] [19]. To limit the necessity to compose 

current states dynamically from individual attributes or 

groups, the current valid state layer is also stored separately 

using object granularity. Thanks to that, even existing 

solutions dealing with the conventional paradigm can be 

directly mapped without the necessity to rebuild the solution. 

Note, that current valid states are formed by the views, 

instead of physical data, so reliability and storage 

performance is ensured.  

The architecture of the group-level temporal model is 

shown in fig. 1. It consists of a conventional layer storing 

current valid states, a temporal layer mapping and composing 

object states, and a layer storing outdated references. Besides, 

there is a complex structure and processes to identify and 

manage synchronization groups autonomously, based on the 

defined rules and parameters.  

 
Figure 1. Group-level temporal architecture 

 

Later, the detection and management of synchronization 

groups were further investigated and optimized.  

To compose the database image and monitor changes 

based on the specified frequency, indexes must be developed, 

pointing the temporal spheres to individual objects and 

timeline mapping. Section 3 deals with the index structures 

and strategies used in temporal systems.  

III. INDEXING 

The critical part of the information system performance is 

related to data access. Data retrieval is a staged process of 

obtaining data and building a result set. Physically, data are 

stored in the data files, which are block organized. To identify 

the data, a particular block must be memory loaded and 

evaluated there. The significant aspect influencing the 

performance is just the technique to identify relevant data 

blocks. The best solution can be provided by the index, which 

takes the address of the row as the output.  

In temporal databases, general relational indexes have 

been primarily inherited. Namely, B+tree is used as a default 

option, consisting of the root element, internal elements 

navigating to the leaf layer formed by the key values, and 

database object reference – ROWID address. ROWID is a 

physical 10-byte structure, which contains the identifier of 

the object, the pointer to the particular data file, block, up to 

the direct position inside the block. Fig. 2 shows the 

architecture of the B+tree index. For reference and 

evaluation, selectivity must be treated, expressing the ratio 

between the amount of unique data portions and total amount. 

B+tree index prefers many unique values. It is rather wide 

than deep. Based on [17], the height of the B+tree consisting 

of 200 millions of keys is only 4.  



 
Figure 2. B+tree index structure 

 

The data inside the B+tree are sorted on the leaf layer 

based on the key and interconnected forming two directional 

linked lists. Thanks to that, range index scanning can be 

performed [6] [8] [12].  

B+tree is always balanced, which reduces the performance 

of the change operations. Such a limitation can be partially 

solved by the post-indexing layer discussed in [15] or Notice 

lists [16].  

The key of the temporal B+tree is the validity time frame 

or any other temporal spheres, like the timestamp of the insert 

operation, transaction approval, etc. The limitation of the 

B+tree index is related to the individual elements. The data 

cannot be sorted based on the individual elements forming the 

Date value, like a month, week, or day. Thus, it is really 

processing time demanding to monitor the changes based on 

the specified frequency.  

The partial solution is related to function-based indexing. 

The index key is not directly formed by the attribute value, 

instead, the function result is indexed. The particular solution 

can be used for individual element extraction. Thanks to that, 

states valid during the defined start point of the validity are 

index placed in the same segment, so the scanning is easier, 

less demanding, but mostly faster. On the other hand,  the 

original temporal value must still be present in the index 

forming duplicate information inside the index.  

Another solution is defined by the index over virtual 

columns, which are generated dynamically and therefore do 

not require additional disk space. However, these indexes are 

not powerful enough for temporal systems. 

Bitmap indexes used for analytics and data warehousing 

require a small number of unique values and a huge amount 

of data generally. Temporal elements meet this condition and 

can be used for time-delimited processing. Thus, if the data 

need to be monitored periodically, particular elements are 

part of the bitmaps getting the list of referenced ROWIDs. 

However, individual ROWIDs are not sorted or structured 

limiting the performance of the monitoring and consecutive 

decision-making [9] [10]. Fig. 3 shows the bitmap index 

structure. 

 
Figure 3. Bitmap index 

 

Section 4 defines the structure of the Date data type used 

in the Oracle database, compared to the other database 

systems. It focuses on the individual element coverage, 

definition, and extraction.  

IV. ORACLE DATE – ELEMENT MANAGEMENT 

Oracle Date data type is characterized by 7 bytes in total. 

The internal data type is 12. It stores date, as well as time 

values, up to second granularity. There are multiple elements, 

which can be directly extracted – day, month, year, hour, 

minute, and seconds and other values can be calculated, like 

a weekday, day number for the whole year, week reference, 

etc. All these element values can be extracted using various 

functions, like TO_CHAR or EXTRACT. All these functions 

are deterministic, so the output of them can be indexed [5] [6] 

[20].  

The limitation of the Oracle Date data type is just the 

granularity. If only date values are to be treated, time 

elements must still be present. Moreover, pure Date value 

indexing sorts the output based on the whole value and 

individual elements cannot be treated separately.  

Finer precision can be modeled using a Timestamp data 

type requiring 11 bytes generally, or 13 bytes by extending 

the value by the time zone reference (Timestamp with time 

zone). One way or another, the whole value is always 

indexed. Therefore, although temporal evolution can be 

monitored and timeline referenced, getting data periodically 

reflecting the changes is demanding. The composition of the 

temporal snapshot image does not get a sufficient solution 

using existing index types. As evident in the performance 

evaluation study in section 6, even function-based indexes do 

not provide a relevant solution for various reasons. Firstly, a 

composite index would be necessary to be defined with many 

duplications. Secondly, there is no direct attribute or group 

reference, thus the object level temporal architecture must be 

used, or object granularity should be provided by the output, 

respectively. Thirdly, changing precision and periodicity for 

the evaluation would require whole index restructuring by 

dropping the existing one and building the new one. Fourthly, 

dynamic evaluation across multiple periodicities and 

dimensions would require multiple indexes to be treated.  

Based on these conditions and characteristics, it is 

inevitable to build a robust solution, which can be applied to 

any element structure dynamically by ensuring robustness 

and performance. In section 5, the proposed bi-index is 

discussed.   

  

V. PROPOSED SOLUTION 

The limitation of the currently used techniques is the 

performance if the data states need to be monitored 

periodically. Individual element extraction must be done by 

the conversion or extraction functions forcing the developer 

to create a function-based index. Moreover, if multiple 

granularities and frequencies need to be monitored, several 

indexes, which have almost the same structure must be 

developed. They differ only in the values of the elements 

themselves and the results of the functions that are indexed. 

And thus also the order of the element at the leaf level of the 

B+ tree is different, depending on the processed element. 

However, the original temporal value must be still present, 

extended by the row reference using ROWID.  

Our proposed solution introduces bi-index, which covers 

the bitmap index primarily, based on the specific elements, 



followed by the B+tree processing sorting and locating 

original data. The solution is based on individual element 

extraction selectivity, which is low, unlike the core temporal 

values, which are characterized by high selectivity. These two 

opposites cannot be part of one index. The architecture of the 

solution is visually presented in fig. 4. Primarily, individual 

elements are extracted based on the defined precision and 

frequency range to be monitored. It is done during the Insert 

or any change operation, even if the data correction needs to 

be done. Then, the extracted element value is assigned to the 

bitmap. Whereas there are low rates of frequencies to be 

monitored and individual values do not range rapidly, the 

bitmap index is the optimal solution. E.g. if it needs to be 

monitored hourly, no more than 24 values are present inside 

the bitmap map. Similarly, for the minutes or seconds, 60 

values are present. When comparing original temporal data 

provided by the sensorial network, particular pre-processing 

reaches significant data reduction by grouping them into 

categories. The output of the bitmap index is the logical 

reference to the B+tree index. In principle, it can be treated 

as a local index (for each bitmap member, a separate B+tree 

is used) or stitched global B+tree index can be used). The 

main advantage of the local processing and index definition 

is based on the ability to process data in parallel. The 

processing and resource demands of the rebalancing are also 

reduced. As stated, the proposed B+tree forms the second 

index making the physical data rows accessible through the 

index by ROWID pointers. Inside the B+tree index, data are 

grouped based on the extracted element part of the bitmap. 

This index is used for searching inside the element category, 

whereas there is a natural assumption, that number of data 

will be high. Thus, the data are preselected by the bitmap 

element mapping, followed by the precise row identification 

using a conventional B+tree index.  

 
Figure 4. Bi-index architecture 
 

Compared to table partition development, it allows 

significantly wider accessibility and flexibility. Namely, 

partitions can be done based on only one element or the 

hierarchy can be used, respectively. However, changing the 

processed granularity and element references is impossible. 

It would be necessary to reconstruct the whole structure to 

apply the change. Moreover, without an index definition for 

the partition, data would be randomly distributed.  

VI. EVALUATION STUDY 

Performance evaluation study has been performed in 

Oracle Database 21c Enterprise Edition (Release 21.0.0.0.0 

– Production) system environment, characterized by the 

multi-tenant Real Application Cluster container database. 

The server parameters were delimited by the following 

values:  

• Processor: AMD Ryzen 5 Pro 5650 2.3GHz 

• Operating memory: 64 GB, DDR4 3200MHz, 

• Disc storage: 2TB PCIe Gen3 x4 NVMe v1.4, 

reading 3500 MB/s, writing 3300 MB/s. 

The data model was associated with air transport 

monitoring by pointing to the planned and real routes of the 

planes. It used a spatio-temporal database. The evaluated 

table consisted of the attributes defining the flight attributes 

– identifier of the flight, state sequence number, airspace 

assignment, data references, and entry and exit time of the 

particular airspace. The second precision was used, 

characterized by the Date data type.  

It used real flight positions across airspace regions in 

Europe. For the evaluation, a particular table stored 4 948 094 

rows. The data example is shown in fig. 5.  

 

 
Figure 5. Evaluated data structure – Flight information region (FIR) temporal 
assignment 

 

The computational study focused on the data element 

pattern identification, coverage, and management. In the first 

stage, individual flights were categorized by weekdays using 

European standardization rules (Monday has been marked by 

value 1, Tuesday referenced value 2, etc.). Thus, in the 

proposed solution, the weekday was used to form the bitmap 

consisting of 7 bit-array elements, providing the logical 

references to B+tree indexes, which referred to the Entry and 

Exit Time clustering of the data based on flight identification. 

In the leaf layer, data row addresses were stored.  

Among the proposed solution physically modeled either 

by local (BI_INDEX_LOCAL) or global 

(BI_INDEX_GLOBAL) B+index reference, various 

existing architectures are evaluated to follow the 

improvement strategy and overall performance. PURE_B+ 

solution defines an index managing the temporal data directly 

without storing individual element extraction separately. It 

consists of the Entry Time and flight number reference. Then, 

the index (FUNC_B+) is extended by storing the weekday as 

the master index key element. The third evaluated reference 

solution points to the weekday treated by the bitmap index 

(BITMAP).  

All these solutions, index architectures and access 

strategies are compared to the environment with no explicit 

index definition forcing the system to perform sequential data 

block scanning (FULL). 

In the evaluation study, firstly, the data access method is 

evaluated, followed by the processing time demands and total 

costs. To obtain the data, Autotrace and Explain Plan tools of 

the SQL Developer were used.  

The total processing time to load the data into the structure 

was 1015.59 seconds.  



Monday is the busiest day for air transport, therefore the 

weekday frequency was evaluated, pointing to the Monday 

expressed by the element numerically.  

The total processing time for the FULL solution 29.09 

seconds forcing the system to scan each table-associated 

block sequentially by loading it into the memory for the 

evaluation. No data fragmentation, nor empty blocks were 

present. If this were not the case, the processing time would 

increase even more, e.g. my moving historical data to the data 

warehouse, lakes, etc. By using a common B+tree index 

based on the flight identifier and entry_time (PURE_B+), the 

total processing time was even 34.54 seconds. The reason 

was based on forcing the system to use the index. However, 

the whole index had to be treated, whereas the weekday is not 

directly present, there and must be extracted. Afterward, the 

missing attribute values must be loaded from the database 

using the ROWID pointer. The bitmap index based on the 

weekday element (BITMAP) calculated during the loading 

required 19.12 seconds by reducing the number of blocks to 

be analyzed and evaluated. The list of relevant blocks is 

obtained by the bitmap index.  

By moving the solution to the function-based index 

(FUNC_B+), processing time was reduced to 16.33 seconds, 

which is the best solution stated as, grouping existing 

solutions. However, such a solution is strongly dependent on 

the frequency and element references to be analyzed. Any 

change requires a new index to be developed.  

The best solution provides our proposed bi-index, which 

required only 12.06 seconds for the global positioning index 

(BI_INDEX_GLOBAL). By transforming the weekday 

evaluation based on the character string, instead of numerical 

value, processing time demands are 12.52 seconds, reading 

the 3.86% of additional processing time.  

Similarly, if the B+tree index is used locally for each 

bitmap value, then each particular index stores all the data, so 

the stitching does not need to be present. Thanks to that, 

processing time can be generally reduced using 4-5%.  

Fig. 6 shows the processing time costs graphically. It is 

evident, that the bi-index provides the best performance by 

reducing processing time costs, compared to function-based 

index using 35.41%. Compared to conventional B+tree, the 

reduction is 65.08%.  

 
Figure 6. Results - Processing time 
 

Another aspect to be highlighted is the total costs, 

expressing the technical requirements more complexly, by 

dealing also with the system sources, I/O operations, waits, 

consistent image definition, CPU, etc. This value more 

technically describes individual solutions. Processing time 

for the sequential scanning is 1778 with no data 

fragmentations or empty blocks present in the system. By 

having 10% fragmented data, processing costs would raise to 

1991. However, if 50% fragmentation is present, processing 

costs would be 3325, which expresses an additional 87%. 

Conventional B+tree and bitmap indexes require almost the 

same costs, (1197 for PURE_B+ and 1113 for BITMAP) 

although the structure and storage demands differ 

significantly. The reason is based on referencing physical 

infrastructure by the database blocks, which is almost the 

same. Function-based index extracting particular weekday 

value reduces the costs to 543, whereas the data are already 

pre-calculated during the Insert operation. Comparing the 

proposed bi-index and function-based index, processing time 

costs are almost the same, too. It results in a structure 

extension of the bi-index, which requires two indexes 

processed sequentially. However, dealing with the processing 

time as a critical parameter for the user, the proposed bi-index 

reaches significantly better performance. Fig. 7 shows the 

results graphically.  

 

 
Figure 7. Results - Costs 
 

Finally, the evaluation emphasizes the storage demands, 

delimited by the index structure size. Graphical 

representation is shown in fig. 8. It is evident, that the most 

demanding is a function-based index, whereas it extends the 

index key by holding a weekday value, which is, compared 

to the bi-index stored once for each tuple. Bi-index marks it 

only once in the bitmap. Conventional B+tree requires 108 

MB, storing function extraction results, storage demands are 

116 MB.  

By evaluating textual and numerical values for the bi-

index, numerical representation reflects 112 MB, while 

textual denotation takes 128 MB.  

 
Figure 8. Results - Size 



VII. CONCLUSIONS 

Current trends in database technology point to the 

complexity of the processing, by shifting the management 

from the non-temporal approach to storing the whole state 

evolution and timeline validity reference. Such a premise 

requires a sophisticated definition of the temporality, either 

from the data model point of view, but also from performance 

aspects should be emphasized reaching robustness and 

complexity.  

Primarily, the performance of the data processing and 

retrieval is associated with indexing. Generally, B+tree and 

bitmaps indexes are used in relational databases, and applied 

in the temporal approaches, as well.  

This paper proposed bi-index as a robust data locator of the 

temporal aspect, applied for the individual elements. Namely, 

many times, Individual objects and states should be 

periodically reflected, identified, and evaluated. By using the 

proposed bi-index solution, processing time demands can be 

reduced using 26.15%, compared to the original function- 

based index in B+tree structure.  

The bi-index is formed by the bitmap layer reflecting the 

temporal extraction element, followed by the B+tree layer 

pointing to the physical repository. The additional total size 

demands for the index definition reference 3.45% 

improvement, compared to the function-based index. It is the 

consequence of the fact, that the bi-index stores the referred 

element only once, unlike the function-based index, which 

processes it once for each covered data row tuple.  

In future research, we will emphasize the merging 

operation of covering elements in multiple bitmaps. In the 

real environment, various granularities, precision frames, and 

frequency ranges should be evaluated. Therefore, it is 

assumed, that the proposed bi-index can significantly help by 

introducing multiple bitmaps pointing to just one general 

B+tree, global for each bi-index. The solution will use 

stitching pointers across the bitmaps. Thanks to that, parallel 

processing across time frames can be present, reducing the 

processing time demands. On the other hand, the strong 

demand for synchronization must be present when states 

change over time dynamically.  
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