

Temporal bi-index

Michal Kvet

Department of Informatics, Faculty of Management Science and Informatics

University of Žilina

Slovakia

Michal.Kvet@fri.uniza.sk

Abstract— Currently, it is important to store the whole

evolution of the object states by referencing the validity time

frame. Temporal databases are inseparable parts of intelligent

information systems. Temporal spheres are mostly referring

validity expressed by the start and end timepoints. To ensure

performance, database indexes are created by sorting the

validity of the states for each object. However, to monitor the

evolution in industry monthly, daily, weekly, or annually, the

standard conventional index is not suitable. In this paper,

temporal architectures are summarized, pointing to the

temporal spheres. It mostly emphasizes indexing, focusing on

the proposed bi-index combining bitmap and B+tree structure

to the common index. Thanks to that, evolution monitoring for

the specified time range can be significantly improved.

Keywords— temporal database; performance; indexing;

temporal elements; monitoring

I. INTRODUCTION

Database storage and overall database technology are

inseparable parts of the current information systems forming

the interlayer between applications and storage perspectives.

There are many types used currently. Although relational

databases were first introduced in 60ties of the 20th century,

they are still very often used nowadays, whereas they require

precise structure delimited by constraints and overall

integrity. Relational databases are formed by the entities and

relationships between them. The data access is based on

relational algebra operations. These operations are part of the

execution plan of the query, selected by the database

optimizer. Generally, the access is done either through the

developed indexes or sequential data block scanning is

necessary to be performed – if no suitable index is present or

the estimated costs using the index are higher than sequential

data block scanning [1] [12]. When dealing with the data

warehousing and analytics based on the large data set,

performance differences can be significant and overall

management should always point to the proper index

definition and maintenance.

From the physical perspective, a database is formed by the

segment [3], which specifies the structure and general

conditions. It also points to the data blocks, which are not,

however, created separately, instead, the extents are

allocated. Each extent is then represented by the fixed size set

of the blocks, generally having 8 blocks. Multiple extents are

grouped together forming a linked list. Thus, sequential

scanning requires block-by-block memory loading,

evaluation, and relevant data tuples extraction. The limitation

of that method is just the data block fragmentation and

dynamic operations, which can even free data blocks.

However, such blocks are not specifically marked and must

be treated during the data retrieval block evaluation.

 In the past, relational databases were focusing on storing

current valid states by replacing original values [14]. Thus,

there was no history stored in the system. Although change

vectors were part of the transaction logs, it was too difficult,

but mostly time demanding to obtain states valid in the

defined time interval.

During the evolution, the temporal paradigm has been

introduced, forced mostly by the industrial environment. It

was primarily was based on storing states of the objects,

framed by the temporal spheres, validity, transaction time

reference, etc. Thanks to that, any state could be identified,

and state evolution could be easily monitored and retrieved

[16]. The database systems were shifted to the cloud

environment allowing to manage, maintain and store huge

data sets very efficiently [7] [11], respecting the ability to

reconstruct the data. The main advantage of the Oracle Cloud

is just the autonomous aspect of the databases, as well as the

auto-indexing option [13] [17] [18]. Autonomous data

warehouses and data lakes strongly require sophisticated

access methods ensuring performance.

The performance of the querying is strongly associated and

supported by the database indexes, by which the relevant data

row addresses can be identified. Typically, B+tree indexes

are used in relational databases. Such a premise has been

applied by temporal processing, too. The validity of the data

tuple can be part of the index key, sorting the states in a

timeline.

The proposed solution is primarily intended for the Oracle

database technology, which is a bit specific. Namely, the Date

data type consists of the second precision frame and no other

granularities are applicable, compared to, for example,

MySQL database, which applies Date, Time, and DateTime

data types for storing various precisions and granularities. As

a result, for database indexing, temporal value is stored

directly, limiting the opportunity to extract individual

elements from the Date value (year, month, week, day, hour,

etc.) consequencing in defining a function-based index, by

which individual elements can be indexed or by requesting

sequential data scanning. For the conventional index, data are

sorted based on validity, not individual elements. On the

other hand, a function-based index requires additional disc

storage capacity. Moreover, there can be issues related to the

integrity of the values, whereas duplicate tuples would be

present.

This paper aims to define bi-index, by which individual

elements can be extracted to the separate index structure. The

architecture is based on using two index types, interconnected

by the logical addresses – IndexIDs. By using the proposed

index solution, particular temporal values can be sorted based

on any temporal element, allowing you to monitor evolution

based on any precision, range, or element. As evaluated in the

computational study, general sensor monitoring applied in

any environment (transport, medicine, industry, etc.) can

significantly benefit, whereas the proposed solution gets new

unique method for the relevant data identification.

The structure of the paper is organized as follows: Section

2 deals with the temporal paradigm by summarizing existing

temporal models. Section 3 deals with the indexing providing

capability for the data retrieval process. Section 4 deals with

the Oracle Date storage principles and element management

by pointing to the limitations of the function-based indexes.

Section 5 deals with the proposed solution, which is

consecutively performance evaluated in section 6.

II. TEMPORAL PARADIGM AND MODELS

The first attempts to develop temporal databases are dated

to the 70ties of the 20th century, related to the relational

database evolution. It was very clear very soon, that

conventional databases storing only current valid states are

not suitable for the complexity. Sooner or later, individual

state evolution would be necessary to be used, modeled, and

highlighted. In these terms, the object identifier is critical.

The primary key is used as a unique and inseparable set of

attributes offering unambiguous state definitions for the

table. It is commonly formed by the ID or composite

definition can be used, as well [4] [9] [17]. One way or

another, the primary key was considered as a milestone for

temporal evolution. Namely, in the first phases, the core

solution was based on an object identifier, extended by the

validity time frame forming a composite primary key. The

limitation was related to efficiency, whereas each change

automatically requested storing a new state completely. As a

result, individual data changes had to be synchronized,

otherwise, there would be many duplicates. Moreover, it was

difficult to identify real change. Namely, if the value

changed, it did not have to be a real change. The important

element was just the accuracy of the measurement,

measurement errors, and data availability. Therefore, the

architecture of the object-oriented approach was

cumbersome, inefficient, and too demanding for the real-

world management and reliability of the data stored in that

structure.

The opposite granularity solution was introduced in 2013

by focusing on individual attributes. Thus, each change was

associated with the attributes, not the whole state. To get the

image valid at a defined timepoint, the composition of

individual attributes was necessary to be done. On the one

hand, it brought efficiency from the point of view of data

storage but added a deficiency caused by the creation of a

complex state over time [14] [16].

The most suitable solution for applying any update

operation frequency for individual attributes is formed by the

group-level temporal architecture. The synchronization

group aims to manage multiple attributes as a single set if the

changes are synchronized. Thus, efficiency is ensured from

the storage perspective [17]. Moreover, building data image

at a defined timepoint is less demanding. The synchronization

group is defined by the temporal layer or the data dictionary

can be used as a repository. One way or another, each group

is temporarily oriented and is composed, rebuilt, or dropped

dynamically based on the defined conditions ensuring overall

performance [17] [19]. To limit the necessity to compose

current states dynamically from individual attributes or

groups, the current valid state layer is also stored separately

using object granularity. Thanks to that, even existing

solutions dealing with the conventional paradigm can be

directly mapped without the necessity to rebuild the solution.

Note, that current valid states are formed by the views,

instead of physical data, so reliability and storage

performance is ensured.

The architecture of the group-level temporal model is

shown in fig. 1. It consists of a conventional layer storing

current valid states, a temporal layer mapping and composing

object states, and a layer storing outdated references. Besides,

there is a complex structure and processes to identify and

manage synchronization groups autonomously, based on the

defined rules and parameters.

Figure 1. Group-level temporal architecture

Later, the detection and management of synchronization

groups were further investigated and optimized.

To compose the database image and monitor changes

based on the specified frequency, indexes must be developed,

pointing the temporal spheres to individual objects and

timeline mapping. Section 3 deals with the index structures

and strategies used in temporal systems.

III. INDEXING

The critical part of the information system performance is

related to data access. Data retrieval is a staged process of

obtaining data and building a result set. Physically, data are

stored in the data files, which are block organized. To identify

the data, a particular block must be memory loaded and

evaluated there. The significant aspect influencing the

performance is just the technique to identify relevant data

blocks. The best solution can be provided by the index, which

takes the address of the row as the output.

In temporal databases, general relational indexes have

been primarily inherited. Namely, B+tree is used as a default

option, consisting of the root element, internal elements

navigating to the leaf layer formed by the key values, and

database object reference – ROWID address. ROWID is a

physical 10-byte structure, which contains the identifier of

the object, the pointer to the particular data file, block, up to

the direct position inside the block. Fig. 2 shows the

architecture of the B+tree index. For reference and

evaluation, selectivity must be treated, expressing the ratio

between the amount of unique data portions and total amount.

B+tree index prefers many unique values. It is rather wide

than deep. Based on [17], the height of the B+tree consisting

of 200 millions of keys is only 4.

Figure 2. B+tree index structure

The data inside the B+tree are sorted on the leaf layer

based on the key and interconnected forming two directional

linked lists. Thanks to that, range index scanning can be

performed [6] [8] [12].

B+tree is always balanced, which reduces the performance

of the change operations. Such a limitation can be partially

solved by the post-indexing layer discussed in [15] or Notice

lists [16].

The key of the temporal B+tree is the validity time frame

or any other temporal spheres, like the timestamp of the insert

operation, transaction approval, etc. The limitation of the

B+tree index is related to the individual elements. The data

cannot be sorted based on the individual elements forming the

Date value, like a month, week, or day. Thus, it is really

processing time demanding to monitor the changes based on

the specified frequency.

The partial solution is related to function-based indexing.

The index key is not directly formed by the attribute value,

instead, the function result is indexed. The particular solution

can be used for individual element extraction. Thanks to that,

states valid during the defined start point of the validity are

index placed in the same segment, so the scanning is easier,

less demanding, but mostly faster. On the other hand, the

original temporal value must still be present in the index

forming duplicate information inside the index.

Another solution is defined by the index over virtual

columns, which are generated dynamically and therefore do

not require additional disk space. However, these indexes are

not powerful enough for temporal systems.

Bitmap indexes used for analytics and data warehousing

require a small number of unique values and a huge amount

of data generally. Temporal elements meet this condition and

can be used for time-delimited processing. Thus, if the data

need to be monitored periodically, particular elements are

part of the bitmaps getting the list of referenced ROWIDs.

However, individual ROWIDs are not sorted or structured

limiting the performance of the monitoring and consecutive

decision-making [9] [10]. Fig. 3 shows the bitmap index

structure.

Figure 3. Bitmap index

Section 4 defines the structure of the Date data type used

in the Oracle database, compared to the other database

systems. It focuses on the individual element coverage,

definition, and extraction.

IV. ORACLE DATE – ELEMENT MANAGEMENT

Oracle Date data type is characterized by 7 bytes in total.

The internal data type is 12. It stores date, as well as time

values, up to second granularity. There are multiple elements,

which can be directly extracted – day, month, year, hour,

minute, and seconds and other values can be calculated, like

a weekday, day number for the whole year, week reference,

etc. All these element values can be extracted using various

functions, like TO_CHAR or EXTRACT. All these functions

are deterministic, so the output of them can be indexed [5] [6]

[20].

The limitation of the Oracle Date data type is just the

granularity. If only date values are to be treated, time

elements must still be present. Moreover, pure Date value

indexing sorts the output based on the whole value and

individual elements cannot be treated separately.

Finer precision can be modeled using a Timestamp data

type requiring 11 bytes generally, or 13 bytes by extending

the value by the time zone reference (Timestamp with time

zone). One way or another, the whole value is always

indexed. Therefore, although temporal evolution can be

monitored and timeline referenced, getting data periodically

reflecting the changes is demanding. The composition of the

temporal snapshot image does not get a sufficient solution

using existing index types. As evident in the performance

evaluation study in section 6, even function-based indexes do

not provide a relevant solution for various reasons. Firstly, a

composite index would be necessary to be defined with many

duplications. Secondly, there is no direct attribute or group

reference, thus the object level temporal architecture must be

used, or object granularity should be provided by the output,

respectively. Thirdly, changing precision and periodicity for

the evaluation would require whole index restructuring by

dropping the existing one and building the new one. Fourthly,

dynamic evaluation across multiple periodicities and

dimensions would require multiple indexes to be treated.

Based on these conditions and characteristics, it is

inevitable to build a robust solution, which can be applied to

any element structure dynamically by ensuring robustness

and performance. In section 5, the proposed bi-index is

discussed.

V. PROPOSED SOLUTION

The limitation of the currently used techniques is the

performance if the data states need to be monitored

periodically. Individual element extraction must be done by

the conversion or extraction functions forcing the developer

to create a function-based index. Moreover, if multiple

granularities and frequencies need to be monitored, several

indexes, which have almost the same structure must be

developed. They differ only in the values of the elements

themselves and the results of the functions that are indexed.

And thus also the order of the element at the leaf level of the

B+ tree is different, depending on the processed element.

However, the original temporal value must be still present,

extended by the row reference using ROWID.

Our proposed solution introduces bi-index, which covers

the bitmap index primarily, based on the specific elements,

followed by the B+tree processing sorting and locating

original data. The solution is based on individual element

extraction selectivity, which is low, unlike the core temporal

values, which are characterized by high selectivity. These two

opposites cannot be part of one index. The architecture of the

solution is visually presented in fig. 4. Primarily, individual

elements are extracted based on the defined precision and

frequency range to be monitored. It is done during the Insert

or any change operation, even if the data correction needs to

be done. Then, the extracted element value is assigned to the

bitmap. Whereas there are low rates of frequencies to be

monitored and individual values do not range rapidly, the

bitmap index is the optimal solution. E.g. if it needs to be

monitored hourly, no more than 24 values are present inside

the bitmap map. Similarly, for the minutes or seconds, 60

values are present. When comparing original temporal data

provided by the sensorial network, particular pre-processing

reaches significant data reduction by grouping them into

categories. The output of the bitmap index is the logical

reference to the B+tree index. In principle, it can be treated

as a local index (for each bitmap member, a separate B+tree

is used) or stitched global B+tree index can be used). The

main advantage of the local processing and index definition

is based on the ability to process data in parallel. The

processing and resource demands of the rebalancing are also

reduced. As stated, the proposed B+tree forms the second

index making the physical data rows accessible through the

index by ROWID pointers. Inside the B+tree index, data are

grouped based on the extracted element part of the bitmap.

This index is used for searching inside the element category,

whereas there is a natural assumption, that number of data

will be high. Thus, the data are preselected by the bitmap

element mapping, followed by the precise row identification

using a conventional B+tree index.

Figure 4. Bi-index architecture

Compared to table partition development, it allows

significantly wider accessibility and flexibility. Namely,

partitions can be done based on only one element or the

hierarchy can be used, respectively. However, changing the

processed granularity and element references is impossible.

It would be necessary to reconstruct the whole structure to

apply the change. Moreover, without an index definition for

the partition, data would be randomly distributed.

VI. EVALUATION STUDY

Performance evaluation study has been performed in

Oracle Database 21c Enterprise Edition (Release 21.0.0.0.0

– Production) system environment, characterized by the

multi-tenant Real Application Cluster container database.

The server parameters were delimited by the following

values:

• Processor: AMD Ryzen 5 Pro 5650 2.3GHz

• Operating memory: 64 GB, DDR4 3200MHz,

• Disc storage: 2TB PCIe Gen3 x4 NVMe v1.4,

reading 3500 MB/s, writing 3300 MB/s.

The data model was associated with air transport

monitoring by pointing to the planned and real routes of the

planes. It used a spatio-temporal database. The evaluated

table consisted of the attributes defining the flight attributes

– identifier of the flight, state sequence number, airspace

assignment, data references, and entry and exit time of the

particular airspace. The second precision was used,

characterized by the Date data type.

It used real flight positions across airspace regions in

Europe. For the evaluation, a particular table stored 4 948 094

rows. The data example is shown in fig. 5.

Figure 5. Evaluated data structure – Flight information region (FIR) temporal
assignment

The computational study focused on the data element

pattern identification, coverage, and management. In the first

stage, individual flights were categorized by weekdays using

European standardization rules (Monday has been marked by

value 1, Tuesday referenced value 2, etc.). Thus, in the

proposed solution, the weekday was used to form the bitmap

consisting of 7 bit-array elements, providing the logical

references to B+tree indexes, which referred to the Entry and

Exit Time clustering of the data based on flight identification.

In the leaf layer, data row addresses were stored.

Among the proposed solution physically modeled either

by local (BI_INDEX_LOCAL) or global

(BI_INDEX_GLOBAL) B+index reference, various

existing architectures are evaluated to follow the

improvement strategy and overall performance. PURE_B+

solution defines an index managing the temporal data directly

without storing individual element extraction separately. It

consists of the Entry Time and flight number reference. Then,

the index (FUNC_B+) is extended by storing the weekday as

the master index key element. The third evaluated reference

solution points to the weekday treated by the bitmap index

(BITMAP).

All these solutions, index architectures and access

strategies are compared to the environment with no explicit

index definition forcing the system to perform sequential data

block scanning (FULL).

In the evaluation study, firstly, the data access method is

evaluated, followed by the processing time demands and total

costs. To obtain the data, Autotrace and Explain Plan tools of

the SQL Developer were used.

The total processing time to load the data into the structure

was 1015.59 seconds.

Monday is the busiest day for air transport, therefore the

weekday frequency was evaluated, pointing to the Monday

expressed by the element numerically.

The total processing time for the FULL solution 29.09

seconds forcing the system to scan each table-associated

block sequentially by loading it into the memory for the

evaluation. No data fragmentation, nor empty blocks were

present. If this were not the case, the processing time would

increase even more, e.g. my moving historical data to the data

warehouse, lakes, etc. By using a common B+tree index

based on the flight identifier and entry_time (PURE_B+), the

total processing time was even 34.54 seconds. The reason

was based on forcing the system to use the index. However,

the whole index had to be treated, whereas the weekday is not

directly present, there and must be extracted. Afterward, the

missing attribute values must be loaded from the database

using the ROWID pointer. The bitmap index based on the

weekday element (BITMAP) calculated during the loading

required 19.12 seconds by reducing the number of blocks to

be analyzed and evaluated. The list of relevant blocks is

obtained by the bitmap index.

By moving the solution to the function-based index

(FUNC_B+), processing time was reduced to 16.33 seconds,

which is the best solution stated as, grouping existing

solutions. However, such a solution is strongly dependent on

the frequency and element references to be analyzed. Any

change requires a new index to be developed.

The best solution provides our proposed bi-index, which

required only 12.06 seconds for the global positioning index

(BI_INDEX_GLOBAL). By transforming the weekday

evaluation based on the character string, instead of numerical

value, processing time demands are 12.52 seconds, reading

the 3.86% of additional processing time.

Similarly, if the B+tree index is used locally for each

bitmap value, then each particular index stores all the data, so

the stitching does not need to be present. Thanks to that,

processing time can be generally reduced using 4-5%.

Fig. 6 shows the processing time costs graphically. It is

evident, that the bi-index provides the best performance by

reducing processing time costs, compared to function-based

index using 35.41%. Compared to conventional B+tree, the

reduction is 65.08%.

Figure 6. Results - Processing time

Another aspect to be highlighted is the total costs,

expressing the technical requirements more complexly, by

dealing also with the system sources, I/O operations, waits,

consistent image definition, CPU, etc. This value more

technically describes individual solutions. Processing time

for the sequential scanning is 1778 with no data

fragmentations or empty blocks present in the system. By

having 10% fragmented data, processing costs would raise to

1991. However, if 50% fragmentation is present, processing

costs would be 3325, which expresses an additional 87%.

Conventional B+tree and bitmap indexes require almost the

same costs, (1197 for PURE_B+ and 1113 for BITMAP)

although the structure and storage demands differ

significantly. The reason is based on referencing physical

infrastructure by the database blocks, which is almost the

same. Function-based index extracting particular weekday

value reduces the costs to 543, whereas the data are already

pre-calculated during the Insert operation. Comparing the

proposed bi-index and function-based index, processing time

costs are almost the same, too. It results in a structure

extension of the bi-index, which requires two indexes

processed sequentially. However, dealing with the processing

time as a critical parameter for the user, the proposed bi-index

reaches significantly better performance. Fig. 7 shows the

results graphically.

Figure 7. Results - Costs

Finally, the evaluation emphasizes the storage demands,

delimited by the index structure size. Graphical

representation is shown in fig. 8. It is evident, that the most

demanding is a function-based index, whereas it extends the

index key by holding a weekday value, which is, compared

to the bi-index stored once for each tuple. Bi-index marks it

only once in the bitmap. Conventional B+tree requires 108

MB, storing function extraction results, storage demands are

116 MB.

By evaluating textual and numerical values for the bi-

index, numerical representation reflects 112 MB, while

textual denotation takes 128 MB.

Figure 8. Results - Size

VII. CONCLUSIONS

Current trends in database technology point to the

complexity of the processing, by shifting the management

from the non-temporal approach to storing the whole state

evolution and timeline validity reference. Such a premise

requires a sophisticated definition of the temporality, either

from the data model point of view, but also from performance

aspects should be emphasized reaching robustness and

complexity.

Primarily, the performance of the data processing and

retrieval is associated with indexing. Generally, B+tree and

bitmaps indexes are used in relational databases, and applied

in the temporal approaches, as well.

This paper proposed bi-index as a robust data locator of the

temporal aspect, applied for the individual elements. Namely,

many times, Individual objects and states should be

periodically reflected, identified, and evaluated. By using the

proposed bi-index solution, processing time demands can be

reduced using 26.15%, compared to the original function-

based index in B+tree structure.

The bi-index is formed by the bitmap layer reflecting the

temporal extraction element, followed by the B+tree layer

pointing to the physical repository. The additional total size

demands for the index definition reference 3.45%

improvement, compared to the function-based index. It is the

consequence of the fact, that the bi-index stores the referred

element only once, unlike the function-based index, which

processes it once for each covered data row tuple.

In future research, we will emphasize the merging

operation of covering elements in multiple bitmaps. In the

real environment, various granularities, precision frames, and

frequency ranges should be evaluated. Therefore, it is

assumed, that the proposed bi-index can significantly help by

introducing multiple bitmaps pointing to just one general

B+tree, global for each bi-index. The solution will use

stitching pointers across the bitmaps. Thanks to that, parallel

processing across time frames can be present, reducing the

processing time demands. On the other hand, the strong

demand for synchronization must be present when states

change over time dynamically.

ACKNOWLEDGMENT

This publication was realized with support of Operational

Program Integrated Infrastructure 2014 - 2020 of the project:

Intelligent operating and processing systems for UAVs, code

ITMS 313011V422, co-financed by the European Regional

Development Fund.

It was partially supported by the Erasmus+ project: Project

number: 022-1-SK01-KA220-HED-000089149, Project title:

Including EVERyone in GREEN Data Analysis

(EVERGREEN).

REFERENCES

[1] Abhinivesh, A., Mahajan, N.: The Cloud DBA-Oracle, Apress, 2017

[2] Al-Sanhani, A.H., Hamdan, A., Al-Thaher, A.B., Al-Dahoud, A.: A
comparative analysis of data fragmentation in distributed database.

ICIT 2017 - 8th International Conference on Information Technology,
Proceedings. 724–729 (2017).
https://doi.org/10.1109/ICITECH.2017.8079934

[3] Castro-Leon, E., Harmon, R.: Cloud as a Service, Apress, 2016

[4] Dudáš, A., Škrinárová, J, Vesel, E.: Optimization design for parallel
coloring of a set of graphs in the high-performance computing. In:
Proceedings of 2019 IEEE 15th International Scientific Conference on
Informatics, pp 93–99. ISBN 978–1–7281–3178–8

[5] Dunaieva, I., Barbotkina, E., Vecherkov, V., Popovych, V., Pashtetsky,
V., Terleev, V., Nikonorov, A., Akimov, L.: Spatial and Temporal
Databases For Decision Making and Forecasting. Advances in
Intelligent Systems and Computing. 1259 AISC, 198–205 (2019).
https://doi.org/10.1007/978-3-030-57453-6_17

[6] Elbahri, F., Al-Sanjary, O., et al.: Difference Comparison of SAP,
Oracle, and Microsoft Solutions Based on Cloud ERP Systems: A
Review, 15th IEEE International Colloquium on Signal Processing &
Its Applications (CSPA), 8-9 March 2019

[7] Jakóbczyk, M.: Practical Oracle Cloud Infrastructure: Infrastructure as
a Service, Autonomous Database, Managed Kubernetes, and
Serverless, Apress, 2020

[8] Lew, M.S., Huijsmans, D.P., Denteneer, D.: Optimal keys for image
database indexing. In: Del Bimbo, A. (ed.) Image Analysis and
Processing. Lecture Notes in Computer Science, vol. 1311, pp. 148–
155. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
63508-4_117

[9] Mikkilineni, R., Morana, G., Keshan, S.: Demonstration of a New
Computing Model to Manage a Distributed Application and Its
Resources Using Turing Oracle Design, 25th IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), 13-15 June 2016

[10] Pendse, S., Krishnaswamy, V., et al.: Oracle Database In-Memory on
Active Data Guard: Real-time Analytics on a Standby Database, 2020
IEEE 36th International Conference on Data Engineering (ICDE), 20-
24 April 2020

[11] Tanveer, A.: Oracle 19c Data Guard, 2020

[12] Kuhn, D., Alapati, S.R., Padfield, B.: Expert Oracle Indexing and
Access Paths. Expert Oracle Indexing and Access Paths. (2016).
https://doi.org/10.1007/978-1-4842-1984-3

[13] Kumar, Y., Basha, N., et al.: Oracle High Availability, Disaster
Recovery, and Cloud Services: Explore RAC, Data Guard, and Cloud
Technology, Apress, 2019

[14] Kvet, M, Matiasko, K., Kvet, M.: Complex time management in
databases, Central European Journal of Computer Science vol.4, 2014,
pp. 269-284, doi: 10.2479/s13537-014-0207-4

[15] Kvet, M.: Database Block Management using Master Index, FRUCT
32 conference, 9-11 November 2022, Finland

[16] Kvet, M.: Covering Undefined and Untrusted Values by the Database
Index, Information Systems and Technologies, Lecture Notes in
Networks and Systems, 2022, ISBN: 978-3-031-04828-9

[17] Kvet, M. and Papán, J.: The complexity of the data retrieval process
using the proposed index extension, IEEE Access, 2022.

[18] Riaz, A.: Cloud Computing Using Oracle Application Express, Apress,
2019

[19] Rolik, O., Ulianytska, K., Khmeliuk, M., Khmeliuk, V., Kolomiiets,
U.: Increase Efficiency of Relational Databases Using Instruments of
Second Normal Form. 221–225 (2022).
https://doi.org/10.1109/ATIT54053.2021.9678605

[20] Schreiner, W., Steingartner, W., Novitzká, V.: A novel categorical
approach to semantics of relational first-order logic. Symmetry
12(1584), 2020 (2020)

