
2023 Communication and Information Technologies (KIT)

Armed Forces Academy of General Milan Rastislav �tefánik in Liptovský Mikulá�

2023 Communication and Information Technologies
Conference Proceedings

KIT 2023
12th International Scientific Conference

organized by

Armed Forces Academy of gen. M. R. �tefánik / Department of Informatics

in co-operation with

The Slovak Electrotechnical Society (Organizing Committee)

IEEE Czechoslovakia Section
CAS/COM/SP Joint Chapter of Czechoslovakia Section of IEEE

Sponsored by

Microsoft, HP, Lynx, Aliter

, Michal Tur

Hotel GRANIT � Vysoké Tatry - Slovakia

11 - 13, 2023

2023 Communication and Information Technologies (KIT)

2023 Communication and Information Technologies (KIT)
Copyright ©2023 by IEEE. All rights reserved.
Published by the Armed Forces Academy of General Milan Rastislav �tefánik, Liptovský Mikulá�, Slovakia, October 2023

Armed Forces Academy of gen. M. R. �tefánik
Department of Informatics
Demänová 393
031 01 Liptovský Mikulá�
Slovakia
Phone: +421 960 422986, +421 960 422735
Fax: +421 960 422269
E-mail: verejnost@aos.sk
URL: www.aos.sk

Copyright and Reprint Permission:
Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law
for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy
fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint
or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright
©2023 by IEEE.

IEEE Catalog Number CFP23M13-USB (USB)
ISBN 979-8-3503-3838-6 (USB)
IEEE Catalog Number CFP23M13-ART (Online)
ISBN 979-8-3503-3839-3 (Online)

2023 Communication and Information Technologies (KIT)

General Chair: cademy, Liptovský Mikulá� (SK)
Honorary Chairmanship: Jozef PUTTERA, Armed Forces Academy, Liptovský Mikulá� (SK)

Technical Program Committee

Chairman: Jozef �TULRAJTER, Armed Forces Academy, Liptovský Mikulá� (SK)

Marek AMANOWICZ, NASK Research Institute (PL)
Marian BABJAK, Armed Forces Academy, Liptovský Mikulá� (SK)
Simon BAKER, Defence Science and Technology Laboratory (UK)
Nazife BAYKAL, Middle East Technical University, Ankara (TR)
Július BARÁTH, Armed Forces Academy, Liptovský Mikulá� (SK)
Dalibor BIOLEK, Brno University of Technology (CZ)

 of Technology, Bratislava (SK)

emy, Liptovský Mikulá� (SK)

k Academy of Sciences, Bratislava (SK)
Petr FRANTI�, University of Defence, Brno (CZ)
Laurian GHERMAN, Henri Coanda Air Force Academy, Brasov (RO)

)
versity of Defence, Brno (CZ)

Miroslav HRUBÝ, University of Defence, Brno (CZ)
Ladislav HUDEC, Slovak University of Technology, Bratislava (SK)
Martin JAVUREK, Armed Forces Academy, Liptovský Mikulá� (SK)
Josef KADERKA, University of Defence, Brno (CZ)
Bernd KLAUER, Helmut Schmidt University, Hamburg (DE)

Peter LENK, NATO Communication and Information Agency, Hague (NL)

Salvador LLOPIS, European Defence Agency, Brussels (BE)
Bob MADAHAR, Defence Science and Technology Laboratory (UK)
Branislav MADO�, Technical University of Ko�ice (SK)
Stanislav MARCHEVSKÝ, Technical University of Ko�ice (SK)
Martin MARKO, Armed Forces Academy, Liptovský Mikulá� (SK)

OU�EK, Armed Forces Academy, Liptovský Mikulá� (SK)
William STEINGARTNER, Technical University of Ko�ice (SK)
Wim MEES, Ecole Royale Militaire, Brussels (BE)

 Academy, Liptovský Mikulá� (SK)
Ján OCHODNICKÝ, Armed Forces Academy, Liptovský Mikulá� (SK)
Grzegorz PILARSKI, War Studies University, Warsaw (PL)
Zbigniew PIOTROWSKI (Col.), Military university of Technology, Warsaw (PL)
Jaroslav PORUBÄN, Technical University of Ko�ice (SK)

o (CZ)
Du�
Bart SCHEERS, Ecole Royale Militaire, Brussels (BE)
Nikolai STOIANOV, Bulgarian Defence Institute, Sofia (BG)
Michael D. STREET, NATO Comm. and Information Agency, The Hague (NL)

rmed Forces Academy, Liptovský Mikulá� (SK)
Zbigniew ZIELINSKI, Military University of Technology, Warsaw (PL)

Organizing Committee
Ján O , Armed Forces Academy, Liptovský Mikulá� (SK)
Emil VIDO, Slovak Electrotechnical Society (SK)
Július BARÁTH, Armed Forces Academy, Liptovský Mikulá� (SK)
Milo� O , Armed Forces Academy, Liptovský Mikulá� (SK)
Martin JAVUREK, Armed Forces Academy, Liptovský Mikulá� (SK)

, ml., Armed Forces Academy, Liptovský Mikulá� (SK)

All the articles were reviewed by the members of Technical Program Committee. (Multi-blind peer review)

2023 Communication and Information Technologies (KIT)

Content

Centralized Communication Scheduler for LoRa 6
()

Practical Aspects of Attacks Against Remote MS Windows Corporate Environment 13
(Martin Pavelka, Ján La�tinec)

Heterogeneous Wireless Sensor Networks Enabled Situational Awareness Enhancement for Armed Forces
Operating in an Urban Environment 21
(Pawel Kaniewski, Janusz Romanik, Krzysztof Zubel, Edward Golan, Maria D. R-Mor
Jan M. K)

Improved Visibility of LoRa Networks Using LoRa Performance Evaluation Tool 29
()

Carrier Sensing of LoRa@FIIT Devices 36

)

LoRa Industrial Monitoring and Management Network 45
()

Anomaly detection from TLE data 51
()

Docker-based Assignment Evaluations in E-learning 56
()

Localization of Modulated Signal Emitters using Doppler-based Method implemented on Single UAV 61
(Rafal Szczepanik, Jan M. Kelner)

Detection of Selected Attacks Based on ANN and Classifiers 66
()

Dangling Predicates and Function Call Optimization in the Oracle Database 70
(Michal Kvet)

Oracle Application Express as a Tool for Teaching Web Software Development 78
(Ivan Pastierik, Michal Kvet)

Application of Neural Networks in Data Communication Analysis 85
(Bianca Badidová,)

Design of Automatic Radiation Detection System as a Part of Radiation Protection in Linear Accelerator Facilities 92

)

Coherent Direction Finder Model with Quadrature Signal Processing in the HF Band 97
()

Adverse Media Screening Portal 103
(Richard Marko, Michal Ries)

Generative Neural Networks as a Tool for Web Applications Penetration Testing 109
(Petr Gallus,)

A Modified STAP Algorithm for Ground-Based Radar 114
()

Improving the Quality of Automated Vehicle Control Systems using Video Compression Technologies 120
for Networks with Unstable Bandwith
(Volodymyr Khilenko, Andrii Zinchenko, Marek Galinski, Volodymyr Danylov)

979-8-3503-3839-3/23/$31.00 ©2023 IEEE

Dangling Predicates and Function Call Optimization
in the Oracle Database

Michal Kvet
Department of Informatics, Faculty of Management Science and Informatics

University of �ilina
�ilina, Slovakia

Michal.Kvet@fri.uniza.sk

Abstract�Oracle Databases have always been considered
the driving engine of information systems performance.
Currently, it is not enough to keep only current valid records
but also historical, as well as future plans need to be treated,
forming a temporal database layer. The input data themselves
are treated in various manner, processed, and stored. To ensure
performance, database indexes are created to locate the row in
the physical storage efficiently by focusing not only on the
attribute values but also function results defined in PL/SQL.
This paper emphasizes function development in PL/SQL by
pointing to the function-based indexing and optimization for the
SQL usage reducing content switch. Besides, it deals with the
dangling predicates for the CASE command to ensure proper
definition and usage methodology.

Keywords�dangling predicates, temporal databases, CASE,
function-based indexing, virtual column, BeeAPEX, EverGreen

I. INTRODUCTION

Database systems, related technologies, and the data layer
itself form the critical layers of information processing
technology. Currently, we can hardly imagine systems that do
not contain a large amount of data, often in heterogeneous
formats. Decision-making systems and intelligent information
systems require significant trusted data to be handled,
processed, stored, and evaluated, forming the additional layer
based on reliability, consistency, and security. Relational
databases rely on the strictly defined data format delimited by
the data model, consisting of the data tables � entities and
relationships [4], [7]. They were first introduced in 60ties of
the 20th century and are still hugely widespread because of the
reliability, data consistency, and integrity, which are
supervised by the transactions [8], [15].

The relational transaction ensures the data traverse from
one consistent state to another, which is also consistent. The
transaction itself is formed by the ACID properties �
atomicity, consistency, isolation, and durability, while the
integrity is defined by the column, user, relational, entity, and
domain property types [11].

One factor in the suitability and continuous expansion of
relational databases is the correctness of the data done on the
integrity rules. The other essential part is the performance in
the entire spectrum. Temporal databases were first introduced
soon after the first releases of relational databases. The
preliminary technology was based on object identifier
extension by the validity time frame. Thus, the primary key
was formed by the original object identifier and validity
borders, expressed by the BD (begin Date of the validity) and
ED (end date of the validity). The granularity precision was
done for the seconds, and later shifted to the mili and
microseconds. Currently, the finest accuracy used in relational
technology is one nanosecond. Subsequently, several streams
could be identified, either in terms of the temporal spheres by
modeling validity, transaction references, or various
timestamps characterizing the processing flow and key parts,
like insertion, timestamp of the processing start, evaluation
timestamp, loading timestamp, transaction approval, etc.
Thanks to that, the whole process of the data transformation,
up to storing them covered by the approved transaction, can
be handled [10].

Among the processed temporal spheres, it is always
inevitable to cover the processed granularity properly. Object-
level temporal architecture is characterized by the object
identifier extension by the temporal elements, allowing to
store multiple versions for one object. However, the temporal
transaction manager must ensure that no more than one object
state is valid at any timepoint. Thus, it allows storing the
whole evolution of the object states by placing them in the
timeline. The main disadvantage of object-level temporal
granularity is the storage efficiency. If the whole state is not
changed in case of the update operation, duplicate values are
stored because the original value must be copied, forming the
new state, even if the original attribute value is not changed.
To serve the storage and performance optimization, attribute
level granularity was introduced. Such an architecture is based
on associating attributes with the temporal spheres (mostly
represented by the validity or temporal transaction reference).
Thus, the state itself is formed by the projection of individual
attributes at a defined timepoint. Attribute-oriented
granularity does not provide duplicate tuples and does not
suffer from the necessity to store the whole state in case of
reaching and update operation. On the other hand, the object
image must be formed by sequential processing of each
attribute projection [10]. The intersolution is covered by the
group-level granularity, which automatically detects the data
and creates synchronization groups, which are then treated and
referenced as a single unit. Each temporal synchronization
group is encapsulated by the validity, as well as rules
determining, when to create or remove existing groups to
ensure performance and related storage demands. Fig. 1 shows
the temporal group on the data model level. Each group can

It was supported by the Erasmus+ project: Project number:
2022-1-SK01-KA220-HED-000089149, Project title:
Including EVERyone in GREEN Data Analysis
(EVERGREEN) funded by the European Union. Views and
opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union
or the Slovak Academic Association for International
Cooperation (SAAIC). Neither the European Union nor
SAAIC can be held responsible for them.

70

be formed by the individual attributes or existing groups. Vice
versa, if any group is marked to be dropped, any group it is
part of, is dropped, as well, in a cascading manner [10].

To ensure the global performance of the system, it is
important to complexly support the database layer through the
storage and retrieval efficiency operated by the database
indexes by limiting sequential data block scanning. Temporal
databases must be empowered by the indexes, mostly defined
by the B+tree or bitmap structures. The B+tree is preferred by
the transaction-oriented temporal databases, while it
maintains efficiency throughout the scalability options. By
using Flower index extensions, also undefined values modeled
as NULL can be part of the index [12].

Fig. 1. Temporal group definition data model.

In this paper, we will focus on the function-based indexes
in the temporal environment. Namely, the main focus will be
on referencing function results, either directly by the index, by
the dynamic computation using a virtual column. Another
solution used in the analytical databases is a materialized view
with auto-refresh [2], [11]. Besides, this paper deals with the
CASE command using procedural language by focusing on its
extensions and enhancements using Oracle Database version
23c � dangling predicates [18].

The motivation of this paper is to create a methodology for
getting the performance of the temporal database dealing with
the function-based results. Besides, it analyses new extensions
of the CASE statements and expressions to highlight
performance impacts.

II. ENVIRONMENT CHARACTERISTICS

Environment characteristics are associated with the Oracle
Database, version 23c, introduced in April 2023. There are
several reasons why to use this database system type and
architecture. Firstly, it is the most progressive solution by
introducing many extensions beyond the ANSI SQL
standardization. Secondly, based on the comparison and
evaluation, Oracle Database provides the best solutions,
respectively is a leading solution. Thirdly, it can be very easily
provisioned and maintained in the Oracle Cloud [1], [2]. In the
past, the Oracle database system tended to be too complicated
to install and set up. It was caused by the ability to complexly
configure the environment, parameters, and characteristics
[2], [3]. Even though the whole configuration can be done in
the cloud environment, as well, it provides an easy
provisioning process categorizing workload type to the
transaction-oriented, analytical, or JSON type [6]. Fourthly,
we have strong skills related to Oracle technologies. Fifthly, it
provides the best scalability compared to other database
systems and technologies [9]. And finally, this paper is
covered by the Erasmus+ projects BeeAPEX [19] and
EverGreen [20], in which Oracle is the consortium partner. In

BeeApex project, the emphasis is done on the data-driven
application development in Oracle Application Express
technology, in which the whole processing is referenced by
the SQL and PL/SQL, which are then critical from the
perspective of the performance. In this project, the emphasis
is not only on functionality, but also on processing efficiency
and speed. EverGreen project relates to the analytical
processing, where the function result referencing and indexing
are critical, while the data sets are commonly huge, so the
optimization in terms of the data access performance is
critical.

Thus, this paper does not focus on the SQL ANSI standard
applicable in any database system nor the comparison of the
individual, relational database system types. Instead, it
focuses only on the Oracle Database and available extensions
regarding the CASE expressions, CASE statements, and
general function result processing in the temporal models.

For the performance evaluation study, a server with the
following parameters was used:

� Processing unit: AMD Ryzen 5 PRO 5650U, 2.30
GHz, Radeon Graphics

� Memory: Kingston, DDR4 type, 2x 32GB, 3200MHz,
CL20

� Storage: 2TB, NVMe disc type, PCIe Gen3 x 4,
3500MB/s for read/write operations

� Operating system: Windows Server 2022, x64
� Database system: Oracle Database 23c, release bundle

Oracle 23c Free, Developer Release Version
23.2.0.0.0.

The data set used for the performance evaluation study
was spatio-temporal oriented, describing airplane positions
and Flight Information Region (FIR) assignment. The
temporal characteristics were based on the GPS positional
data, FIR entry and exit type, and 100 parameters describing
the flight. The whole data set consisted of 5 million rows. The
CASE was used to identify airplane position and reference to
the particular country or region (FIR does not reference the
borders of the countries precisely). The structural example of
the data source is shown in Fig. 2.

Fig. 2. Data source.

III. REFERENCING FUNCTION RESULTS

B+tree index structure is a robust architecture enhancing
the performance by optimizing access to the individual tuples,
which are block-oriented. Thus, instead of sequential block-
by-block scanning to locate the row, an index is to obtain the
address of the row in the database layer. ROWID address is
the most suitable solution to reference and access the
particular row. The B+tree index traversing starts with the root
node, through the internal nodes, up to leaf layer, which holds
the ROWID references. The whole structure is index key
oriented and is always balanced, which can partially limit the
loading and update operations. Therefore, post-indexing has
been introduced in [12] to exclude the index balancing process
from the separate transaction by preserving the reliability of
the index by covering all the records. The architecture of the
B+tree index is shown in Fig. 3. The key of the B+tree index
can be either the attribute itself, a set of attributes, or any

71

expression resulting from the function call. Besides, the
virtual column can also be indexed. The virtual column looks
like an ordinary table attribute, but the values are not stored
physically in the database. Instead, the content is generated
dynamically on demand. The definition is done by the
expression to determine the value, optionally enhanced by the
GENERATED ALWAYS or VIRTUAL keywords, but they
are used just for clarity. The syntax of the virtual column
definition is the following [5], [11] :

column_name [data_type]
 [GENERATED ALWAYS] as (expression) [VIRTUAL]

The data type is also optional. If omitted, the database
system determines the type based on the expression results. In
the Expression clause, the function result can be referenced.
However, the function definition must be deterministic, even
stated in the function header explicitly.

Fig. 3. B+tree index.

Function specification and body are defined by the
procedural language (PL/SQL) and then called inside the data
manipulation SQL operations (DML statements � Insert,
Update, Delete, and Select). While the environment for the
SQL and PL/SQL is not the same, content switches must be
present, adding additional demands and lowering the
performance. Oracle Database, however, allows using a
specific routine, optimizing the calls and function result
generating by navigating the usage primarily for the SQL
statements. PRAGMA UDF (User Defined Function) allows
you to navigate the system to optimize the function for the
SQL calls instead of the PL/SQL usage.

IV. ENHANCING CASE COMMAND

The CASE expression and statement have always been
part of the conditional processing defined by the procedural
language. All database systems have such an option. Although
the syntax and keywords can differ, the principles,
applicability, and usability are always the same. That principle
was adopted by the Oracle Database and was available
throughout the versions up to Oracle Database 21c, introduced
in December 2020. There were two types of CASE
expressions and statements, either defined by the equality
mapping or by the conditions. Equality mapping consists of
two parts. CASE clause specifies the left side of the equality
evaluation, commonly expressed by the attribute, variable or
function result. Individual WHEN branches then refer to
individual values, typically specified by the constants stated
explicitly. The evaluation is done by the equality check in
a mathematical manner, consequencing in the inability to treat
NULL values, whereas they must be covered by the IS NULL

or IS NOT NULL clause, equality check is always considered
as NULL resulting in processing in a FALSE branch.

The syntax of the CASE equality mapping is following:

CASE expression
 WHEN val_1 then process_1;
 WHEN val_2 then process_2;
 WHEN val_n then process_n;
 [ELSE process_else;]
END CASE;

Several WHEN branches can be present, the system looks
for the first from the top to apply. Optionally, the ELSE clause
can be present to cover all evaluations which do not fit any
WHEN branch.

Variables are not initialized, so they hold NULL by
default. In the following code snippet, the ELSE clause will
be handled because NULL values cannot be mathematically
treated, consequencing that the fifth branch will never be
applied.

declare i integer;
begin
 case i
 when 1 then dbms_output.put_line(1);
 when 2 then dbms_output.put_line(2);
 when 3 then dbms_output.put_line(3);
 when 4 then dbms_output.put_line(4);
 when NULL then dbms_output.put_line('is null');
 else dbms_output.put_line('else');
 end case;
end;

The second CASE type takes the empty CASE part. The
whole evaluation is done based on the condition stated for
each WHEN branch. One branch has one condition, optionally
enhanced by the ELSE clause. The evaluation is done from the
top. The first branch, which is evaluated as TRUE, is taken.
This solution is much more flexible, while it is not limited to
managing only conditions based on equality. The syntax is
shown in the following code snippet. It can cover any
condition, even based on a NULL value, while the processing
is treated based on the condition, not just by the equality. The
disadvantage of this approach is the function result reference,
which can be evaluated multiple times, one for each branch,
compared to the first CASE type, in which the value is
obtained only once.

CASE
 WHEN condition_1 then process_1;
 WHEN condition _2 then process_2;
 WHEN condition _n then process_n;
 [ELSE process_else;]
END CASE;

The problem is depicted by the following code snippet.
Note, that the referred function can be called up to five times,
which brings additional processing time and resource
demands:

begin
 case
 when get_data=5 then dbms_output.put_line(5);
 when get_data=4 then dbms_output.put_line(4);
 when get_data=3 then dbms_output.put_line(3);

72

 when get_data=2 then dbms_output.put_line(2);
 when get_data=1 then dbms_output.put_line(1);
 else dbms_output.put_line('else');
 end case;
end;

Generally, the problem can be even deeper. Although it
can be partially done by pre-storing function results, it is still
an uncommon and non-general solution:

declare
 processed_val integer;
begin
 processed_val:=get_data;
 case
 when processed_val=5 then dbms_output.put_line(5);
 when processed_val=4 then dbms_output.put_line(4);
 when processed_val=3 then dbms_output.put_line(3);
 when processed_val=2 then dbms_output.put_line(2);
 when processed_val=1 then dbms_output.put_line(1);
 else dbms_output.put_line('else');
 end case;
end;

All the above solutions apply ISO standard � SQL:2003
(ISO03a, ISO03b) spread by the database systems. Oracle
Database 23c introduced several CASE expression and
statement extensions to make it more flexible [13], [18]. It
allows to combine both types and encapsulate both principles
and approaches in a single unit. Namely, the CASE clause can
consist of the expression reference, while individual WHEN
branches can consider multiple values or ranges. Instead of
equality mapping and evaluation, dangling predicates can be
used. A dangling predicate is an expression which lacks the
left operand. Namely, if the mathematical operation is
missing, the equality symbol is automatically used. The
principles are shown in the following code snippet. The first
branch takes the equality value, while the rest are based on the
range limits.

declare
 output varchar(100);
begin
 output:=case get_data
 when =0 then 'landed'
 when <=10 then 'taking off'
 when <500 then 'flying'
 when <700 then 'landing'
 when <800 then 'taxi'
 when is null then 'unknown'
 end ;
end;

Please note that the equality sign can be omitted.

output:=case get_data
 when 0 then 'landed'
 end;

The NULL value must be treated by the IS NULL
keyword manner. Otherwise, it would be treated by the
equality sign resulting in the inability to cover such a branch.
The stated enhancement allows the user to reference the
function call without the necessity to declare a local variable
and store the function result there.

A. Multiple conditions in a single WHEN branch

A single WHEN clause can contain multiple checks and
conditions done by the dangling predicates, separated by
commas. The fourth WHEN takes a list of three values
covered by the branch. The seventh WHEN defines two
conditions.

declare
 output varchar(100);
begin
 output:=case null
 when =0 then 'landed'
 when <=10 then 'taking off'
 when <500 then 'flying'
 when 100, 200, 300 then 'checkpoint'
 when <700 then 'landing'
 when <800 then 'taxi'
 when >800, <0 then 'error'

 when is null then 'unknown'
 end ;
 dbms_output.put_line('value:'||output);
end;

B. CASE statement vs. CASE expression

CASE statements and CASE expressions are similar in
form and functionality. CASE expression produces a single
value, while CASE statement is the execution of the PL/SQL
command sequence. There is a processing (assignment) done
for each WHEN branch separately. Syntactically, whereas
multiple commands can be present in a CASE statement, each
of them is terminated by the semicolon (;). Besides, it ends
with the END CASE, while the CASE expression is closed by
the END clause only.

V. PERFORMANCE STUDY

The computational performance evaluation study can be
divided into three categories processed separately. In the first
part, data selection is treated and enhanced by various index
types. The selection itself is made in the numerical value
comparison, character string comparison, and date time value
processing. The second evaluated category deals with the
conversion functions, either by calling packaged function
(package DBMS_STANDARD), part of the database system,
own PL/SQL function, user-defined function optimization to
SQL environment (using UDF pragma clause), and implicit
conversion. The third evaluation stream deals with the CASE
statement and expression, extended by the enhancements
introduced in Oracle 23c (like dangling predicates).

A. Data selection

This evaluation category takes into account the relational
algebra operation selection [16], [17] by limiting the data
amount by the Where clause of the Select statement. The
selection limited the data set to 1%, 10%, 30%, 50%, and 80%,
compared to the whole data set, consisting of 5 million rows.
The selection was made based on the function result. There
were two indexes (B+ tree and Bitmap), which considered the
input value, not the function results themselves. Then, a
function-based B+tree was developed. Another solution for
the consideration was based on the virtual column, which was
then indexed. The advantage of the virtual column is that no
additional storage demands are necessary, while the value is
calculated on demand and can be memory buffered. However,
based on the results, the processing time and global processing
demands deeply depend on the data type to be processed. The

73

results are shown in Tab. I. Please note that the system was
forced to use the defined index by the hint part of the Select
clause. As evident, whereas only function input values were
indexed for the B+tree and Bitmaps, the performance was
even smaller than sequential data block scanning (Table
Access Full � TAF), because the whole index was necessary
to be scanned, followed by the function result calculation,
processing and evaluation. Although the row address was
directly available, the processing lacks the wider ability to
scan the data in parallel [5], [13], [14].

TABLE I. PERFORMANCE - INDEXES PROCESSING FUNCTION RESULTS
� INTEGER.

While dealing with the character string in the conditions,
significantly different results were obtained. The evaluation of
the string is much more demanding in all categories. The
significant processing time increase can be identified for the
virtual index, as well. Compared to the function-based index,
the virtual column requires almost double the time. Based on
further analysis, it is caused by the different principles in the
memory storage � function results are stored in the Result
Cache of the Shared Pool, while virtual values are placed in
the memory Buffer cache. The character string evaluation is
more complicated than numerical or Date values because of
the heterogeneity in the structure and dynamic size (varchar
type was used). The results are shown in Tab. II.

TABLE II. PERFORMANCE - INDEXES PROCESSING FUNCTION RESULTS
� CHARACTER STRING.

The last condition evaluation category emphasizes Date
values. The proportions between individual types are similar
to the numerical types stated in Tab. I. Function-based results
and virtual columns provide almost the same performance.
The results are in Tab. III. For the TAF, all the blocks need to
be scanned. The increase in the processing time is therefore
associated with the result set building in the memory, forcing
the system to free up the space there. The server costs are
almost the same, irrespective of the number of data in the
result set for TAF, B+ tree, and Bitmap. A different situation
is related to the function-based results and virtual columns.
Although the processing time is almost the same for both
types, differing up to 4.76%, the difference in the total server
demand ranges from 5.9% up to 8.3%. The reason is that total
processing costs refer to various server parameters and

consumption details, like memory, I/O, processing time, as
well as the number of used background processes.

TABLE III. PERFORMANCE - INDEXES PROCESSING FUNCTION RESULTS
� DATE.

B. Referring functions

SQL language can serve function calls if they pass some
pre-requirements. Firstly, inside, there can be no Data
Definition Language (DDL) command nor transaction end
(Commit, Rollback). If called by the Select statement, no data
change operation can be present (Insert, Update, Delete).
Secondly, all the used routines and data types should be
supported by the SQL (e.g., many database systems, as well
as Oracle Database releases prior 23c do not support Boolean
type). For the evaluation study, conversion methods are
evaluated, taking the Date representation transformed to the
character string value. The reference solution is the
TO_CHAR conversion method, part of the STANDARD
package available in the Oracle Database. It takes 100%.
Explicit conversion function definition in PL/SQL requires an
additional 21 up to 23%. As evident, there is no significant
difference between SQL and PL/SQL optimization, and UDF
pragma does not provide relevant improvement in the
temporal environment. Finally, relying on the implicit
conversion brings a significant performance jump by lowering
the processing time demands by 46.80%. Thus, from the
performance point of view, implicit conversions should be
preferred. On the other hand, relying on implicit conversions
can bring significant reliability issues. Namely, it refers to the
server or session format (delimited by the
NLS_DATE_FORMAT parameter), which value is initially
inherited from the server parameter. Thus, if the National
Language Support (NLS) parameter is changed, a different
output format would be produced. Explicit TO_CHAR
function or own definition can be prone to the parameter
settings.

Graphical representation is shown in Fig. 4.

Fig. 4. Processing time � Function definition types.

74

The results are in Tab. IV.

TABLE IV. PERFORMANCE � FUNCTION DEFINITION TYPES.

C. Using CASE statements and expressions

During the performance evaluation, we also dealt with the
CASE expression and statement usage by focusing on the
dangling predicates introduced in Oracle Database 23c. There
were three streams for the evaluation based on the processed
data value type � numeric, character string and date value. For
each data type, expressions and statements are considered
separately by considering the dandling predicates. Each call
was done 5 000 000 times. SOL1 is based on the expression
dealing with the numeric value. No dangling predicate was
used. Get_data is a function which value is requested for each
WHEN branch.

output:=case
 when get_data=0 then 'landed'
 when get_data<=10 then 'taking off'
 when get_data<500 then 'flying'
 when get_data<700 then 'landing'
 when get_data<800 then 'taxi'
 when get_data is null then 'unknown'
 end ;

SOL2 uses a similar solution based on the numeric value
representation and consideration. However, the dangling
predicate is used. Thanks to that, the particular function
Get_data is called only once for the whole CASE expression:

output:=case get_data
 when =0 then 'landed'
 when <=10 then 'taking off'
 when <500 then 'flying'
 when <700 then 'landing'
 when <800 then 'taxi'
 when is null then 'unknown'
 end ;

Analogous solutions for dealing with the statements are
considered in SOL3 and SOL4:

case
 when get_data=0 then output:='landed';
 when get_data<=10 then output:='taking off';
 when get_data<500 then output:='flying';
 when get_data<700 then output:='landing';
 when get_data<800 then output:='taxi';
 when get_data is null then output:='unknown';
end case;

case get_data
 when =0 then output:='landed';
 when <=10 then output:='taking off';
 when <500 then output:='flying';
 when <700 then output:='landing';
 when <800 then output:='taxi';
 when is null then output:='unknown';
end case;

The second category for the reference pre-stores the
function results in the local variables, which are then
evaluated. Therefore, the function is called only once to store
it locally.

SOL5 uses an expression with no dangling predicate,
while SOL6 deals with the dangling predicate. SOL7 is
covered by the statement with no predicate, and SOL8
emphasizes the statement with dangling predicate usage.

data:=get_data;
 output:=case
 when data=0 then 'landed'
 when data<=10 then 'taking off'
 when data<500 then 'flying'
 when data<700 then 'landing'
 when data<800 then 'taxi'
 when data is null then 'unknown'
 end ;

The results for the numeric value consideration are shown
in Tab. V.

Based on the results reached, by using dangling predicates
for the function calls, the overall processing time demands are
almost the same as pre-storing. Furthermore, even some small
improvements can be identified, caused by optimization in
PGA (Process Global Area), because the local variables do not
need to be declared and managed explicitly. For SOL1 and
SOL3, the significant additional demands are caused by
repeated function calls for each branch of the CASE
expression or statement. In our case, 6 WHEN branches were
present. The best solution was obtained by the SOL2 �
expression with dangling predicate usage � 0.801 seconds.
Compared to SOL1 and SOL3, they would require an
additional 192.0% for SOL1 and 137.7% for SOL3. Statement
usage is preferred over the expression for all the cases by
reducing the demands ranging from 0.6% to 18.6%. A
graphical representation of the results is stated in Fig. 5.

TABLE V. PERFORMANCE � CASE IN PL/SQL � INTEGER.

75

Fig. 5. Processing time � CASE � integer value consideration.

When dealing with the character string as an output of the
function, significant additional processing time demands can
be identified, compared to the numeric value processing,
which is done by the wider range of the applicable values,
diacritics, lowercase, uppercase formats, as well as alpha-
numeric characters, which can be applied. Tab. VI shows the
results. The worst solution was obtained by the solutions with
no dangling predicates. The total demands are 3.660 seconds
for expression handling and 3.566 seconds for the statement.
It is caused by the necessity to recalculate function results
multiple times for the same parameters (once for each CASE
command branch. Although it can be partially limited by
caching the result of the function using the RESULT_CACHE
clause [5], [14], it is still necessary to reference the function
and find the value in the memory structure of the database
instance. Generally, the size of the Result Cache of the Shared
Pool is limited, so already calculated value can be removed to
serve other workloads. By using a dangling predicate, total
processing time demands are lowered up to 1.110 seconds for
expressions, which expresses a 69.67% decrease. For the
statements, the decrease refers to 70.58%. By comparing SOL
2 and SOL5 solutions, the impact of the pre-storing can be
taken into account. Even using a dangling predicate ensures
lower processing time demands, while the value is stored
internally with no necessity to allocate and reference local
variables. Namely, it requires only 1.110 seconds, expressing
only 95.16%. Similarly, for the CASE statement, by
considering SOL 4 and SOL 7 solutions, total demands
express only 72.70%. A more significant decrease is caused
by the type and size of the data format � variable size of the
character string.

TABLE VI. PERFORMANCE � CASE IN PL/SQL � STRING.

The intersolution between the numeric and textual
representations is formed by the DATE value processing. The
correlations between individual solutions are almost the same,
taking 87% of the processing time between Date and already
discussed character strings. Although it benefits from the
precise storage demands, the structure and formats are
influenced by the national language set formats. Thus, if any
of those parameters are changed, the already pre-prepared
result cache holding transformed data should be invalidated,
as well. Thus, the dangling predicate is then more performance
effective.

TABLE VII. PERFORMANCE � CASE IN PL/SQL � DATE.

VI. CONCLUSIONS

The relational database paradigm is still the widespread
concept of storing data in the data model formed by the entities
and relationships delimited by integrity constraints. All the
characteristics and data suitability are ensured by the
transactions shifting the database to a consistent state before
the transaction approval. In this paper, Oracle Database is
used, which is characterized by robustness, reliability,
performance, and scalability. It can be used either on-premise
or cloud, in which the supervision of the database, availability
and patching is done by the cloud vendor. The treated
environment is based on temporal data processing.

This paper aims at the temporal database function
management by combining procedural (PL/SQL)
environment and world of the SQL language. Several
architectures and enhancements were discussed. The focus
was done on the content switches between SQL and PL/SQL,
which can be reduced by using the PRAGMA UDF clause,
navigating the system to compile user defined functions for
SQL usage.

Besides, the emphasis was done on the conversion
between individual data types. Whereas the core parts are
temporally treated, conversion of the Date value to the
character string was used. It can be done by various techniques
and solutions, either by the function provided in the
STANDARD package of the Oracle Database bundle, by
explicit or implicit conversions. Although the best
performance is obtained by the implicit conversion, such a
solution is not robust, whereas it strongly depeknd on the
server or session National Language Support (NLS)
parameters. Thus, by changing the value of the
NLS_DATE_FORMAT, different results would be produced.
Then, the undefined value roots are discussed by focusing on
the B+tree index extension to cover undefined values, as well
as function result indexing optimization.

76

The second part of the paper deals with the Oracle
Database 23c release extension, introduced in April 2023. It
provides a bunch of new features and optimization techniques
to sharpen the performance. One of the key features studied in
this paper relates to the dangling predicate CASE command in
the PL/SQL. Therefore, in the computational study, the impact
of the CASE statement and CASE expressions is analyzed, by
focusing on the transformations and usability. Dangling
predicates are characterized by the missing left operand of the
expression. It provides significant performance improvements
if function results are referred, there, even better than pre-
storing function result in a local variable declared in the
function, whereas it requires the declaration, assignment, and
checking. In the case of using a dangling predicate, the whole
management is left to the database system optimizer, which
stores internal variables more efficiently within the session
memory (PGA). Moreover, the entire declaration is created
immediately before the assignment or references themselves.
This has the effect of reducing processing demands on the
memory space and consumed capacity.

In the future, we will emphasize other key features of the
Oracle Database 23c by focusing on the performance impacts
and overall methodology. Additionally, we will focus on
optimizing the performance of indexes in spatio-temporal
databases. We assume that the combination of B+tree and
bitmap bucketing indexes covered by the function results in
the temporal database environment can bring additional power
because the timestamp of the validity start does not need to be
the same as the insertion timestamp.

ACKNOWLEDGMENT

It was supported by the Erasmus+ project: Project number:
2022-1-SK01-KA220-HED-000089149, Project title:
Including EVERyone in GREEN Data Analysis
(EVERGREEN) funded by the European Union. Views and
opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union or
the Slovak Academic Association for International
Cooperation (SAAIC). Neither the European Union nor
SAAIC can be held responsible for them.

REFERENCES
[1] A. Abhinivesh and N. Mahajan, �The Cloud DBA-Oracle,� Apress,

2017.

[2] L. Anders, �Cloud computing basics,� Apress, 2021.

[3] T. Cunningham, �Sharing and Generating Privacy-Preserving Spatio-
Temporal Data Using Real-World Knowledge,� In 23rd IEEE
International Conference on Mobile Data Management, Cyprus, 2022.

[4] R. Greenwald, R. Stackowiak, and J. Stern, �Oracle Essentials: Oracle
Database 12c,� O'Reilly Media, 2013.

[5] S. Idreos, S. Manegold, and G. Graefe, �Adaptive indexing in modern
database,� In ACM International Conference Proceeding Series, 2012.

[6] M. Jakóbczyk, �Practical Oracle Cloud Infrastructure: Infrastructure as
a Service, Autonomous Database, Managed Kubernetes, and
Serverless,� Apress, 2020.

[7] J. Janá ek and M. Kvet, �Shrinking fence search strategy for p-location
problems,� In 2020 IEEE 20th International Symposium on
Computational Intelligence and Informatics (CINTI), Hungary, 2020.

[8] D. Kuhn and T. Kyte, �Oracle Database Transactions and Locking
Revealed: Building High Performance Through Concurrency,� Apress,
2020.

[9] Y. Kumar, N. Basha, K. Kumar, B. Sharma, and K. Kerekovski,
�Oracle High Availability, Disaster Recovery, and Cloud Services:
Explore RAC, Data Guard, and Cloud Technology,� Apress, 2019.

[10] M. Kvet, �Developing Robust Date and Time Oriented Applications in
Oracle Cloud: A comprehensive guide to efficient Date and time
management in Oracle Cloud,� Packt Publishing, 2023, ISBN: 978-
1804611869.

[11] D. Kuhn and T. Kyte, �Expert Oracle Database Architecture:
Techniques and Solutions for High Performance and Productivity,�
Apress, 2021.

[12] M. Kvet and J. Papán, �The Complexity of the Data Retrieval Process
Using the Proposed Index Extension,� IEEE Access, vol. 10, 2022.

[13] J. Lewis, �Cost-Based Oracle Fundamentals,� Apress, 2005.

[14] Z. Liu, Z. Zheng, Y. Hou, and B. Ji, �Towards Optimal Tradeoff
Between Data Freshness and Update Cost in Information-update
Systems,� In 2022 International Conference on Computer
Communications and Networks (ICCCN), USA, 2022.

[15] W. Schreiner, W. Steingartner, V. Novitzká, �A Novel Categorical
Approach to Semantics of Relational First-Order Logic,� In Symmetry-
Basel, vol. 12, issue 10, MDPI, 2020.

[16] S.Y.W. Su, S.J. Hyun, and H.M. Chen, �Temporal association algebra:
a mathematical foundation for processing object-oriented temporal
databases,� IEEE Transactions on Knowledge and Data Engineering,
vol. 4, issue 3, 1998.

[17] X. Yao, J. Li, Y. Tao, and S. Ji, �Relational Database Query
Optimization Strategy Based on Industrial Internet Situation
Awareness System,� In 7th International Conference on Computer and
Communication Systems (ICCCS), China, 2022.

[18] Case enhancements - https://oracle-base.com/articles/23c/case-
statement-and-case-expression-enhancements-23c

[19] Erasmus+ project BeeAPEX - Better Employability for everyone with
APEX : https://beeapex.eu/

[20] Erasmus+ project EverGreen dealing with the complex data analytics:
https://evergreen.uniza.sk/

77

