

Michal Kvet
Department of Informatics, Faculty of Management Science and Informatics

Michal.Kvet@fri.uniza.sk

Abstract Databases are continuously migrated to the cloud
environment. On the other hand, there are still many
requirements to locate the data in a local repository due to
legislative and security reasons. Database files are block
oriented forming the storage. This paper aims to analyze the
impact of disc storage on performance in an on-premise world,
pointing to the data themselves, as well as indexes to split the
workload into multiple disc-type environments. It provides the
methodology for dealing with various storage types and access
routes.

Keywords database performance, disc storage, NVMe,
physical infrastructure

I. INTRODUCTION

Database forms the central data repository of almost any
information system by separating data and application layers.
Databases are robust if they ensure overall consistency,
defined by the data model, user, and global constraints. Most
of the data systems currently offer transaction support
ensuring atomicity, consistency, isolation, and durability.
Transaction as a unit of database system work ensure transfer
from one consistent state to another by committing the
changes. A significant aspect of the transaction is just the
durability in terms of data reconstruction opportunity after the
crash from any reason, like electricity failure, network
failure, up to the disc, and hardware crashes. An inseparable
part of the administration relates to security, threats [19],
failures, SQL injection, etc. Thus, the aim is to provide robust
architecture, by which the data can be reconstructed and the
system can be recovered without any data loss. During the
evolution, several database system architectures have been
introduced. The database system itself is formed by the
instance delimited by the background processes and memory
structures and the database itself, formed primarily by the
data files holding the data. Each data file of the relational
system is block oriented, the whole data activity is done in
the memory after loading into the memory Buffer cache,
which is also block-oriented forming the matrix [1].

The critical database operation is just the data block
management, relevant block identification, and location,
followed by the memory loading and complex treatment. In
principle, during the data retrieval process, relevant blocks
must be processed to compose the result set. It can be done
by sequential scanning or using an index [8] [9]. One way or
another, there is always necessary to load blocks. Blocks are
part of the data files physically stored on the disc storage.
This paper aims at physical architecture. Several disc types
currently exist and are used for storage, from conventional
discs and SSD up to the newest memory cards using NVMe
technology. This study analyses the impact of physical
architecture on the performance of data block identification
and loading. Behind the scene, many systems are
consecutively migrated to the cloud environment, however,
there are still many situations, which require private

solutions, on-premise world, and local systems. The most
significant reason is related to the security rules, application
domain, and critical data, which cannot be stored outside of
the particular country, like many European Union data cannot
be handled outside the region. Therefore some vendors are
planning to spread the cloud repositories to apply those rules,
like Oracle Cloud building separate Cloud repositories for the
European Union [22].

The paper is structured as follows. Section 2 deals with the
database architecture summary, pointing to the instance and
database mapping. Section 3 summarizes data access methods
delimited by the sequential scanning and index access paths.
Section 4 emphasizes disc types used for the evaluation study,
which is part of section 6. State of the art is summarized in
section 5 focusing on the existing research related to the discs
and databases.

II. DATABASE ARCHITECTURES

The general database system architecture is shown in
fig. 1. Database server is formed by the database and the
instance is available to the users via the listener, which
interconnects the user process and created server process.
After the handshaking, the data flow is made directly from
the user to the server processes and vice versa. A server
process is extended by the Private Global Area (PGA) storing
local data associated with the session, while other memory
structures are shared forming an SGA structure set [8].

Fig. 1. Single-tenant database architecture generalization

As can be seen, the database server has an instance and
database reflected by the permanent storage. Users cannot
access the database directly, all the operations are managed
by the background processes. The reference between the
instance and database, however, does not need to be 1:1,
dynamic database loading and unloading can be present in the
container style. This section delimits individual architectures
focusing on the instance and database mapping.

Single-tenant database (non-container database) consists
of the data files, control files consisting of the data file
description and paths, transaction logs, parameter files, and
metadata. For that database, one instance is created.

Single-tenant RAC database uses a RAC listener and
multiple instances are present for one database to balance the
workload across the instances by building a reliable solution
prone to instance collapse. Each instance has its listener,
covered by the Single Client Access Name (SCAN) RAC
listener supervision.

Multi-tenant container database uses a root container
consisting of the control files, log files, parameter files, and
metadata file definitions. However, there are no application
data present there, they are separated from the pluggable
databases, which can be attached and detached dynamically.
Pluggable databases store only data, thus they need a
container to be applicable. The generalization of the
containerization is delimited by the Multi-tenant RAC
database consisting of multiple instances. The database layer
has one root container database, to which multiple pluggable
databases (PDB) can be routed. Fig. 2 shows the architecture
of the Multi-tenant RAC database. This architecture is used
for the evaluation study in this paper.

Fig. 2. Multi-tenant RAC database

III. INDEX AND ACCESS METHODS

One of the strongest optimization techniques for data
access management is the index. It is primarily used for the
data location using pointers to the physical database but can
be used to ensure constraint passing. Commonly, relational
database systems highlight a B+tree index structure
consisting of the root note, internal nodes, and leaf nodes
dealing with the data row addresses ROWIDs. ROWID is
defined by the 10 bytes and consists of the object identifier,
data file definition, block assignment, and position of the row
inside the index. It is managed and visualized by the
DBMS_ROWID package [2] [6] [10] [14] [18].

The traverse path is delimited by the index keys
attributes or deterministic function results can be part of the
key. The advantage of the B+tree index tree is its spread to
the width rather than the height, so the performance does not
degrade with the significant data number growth, e.g. for 200
million rows, only 4 layers are present. The limitation of the
B+tree index is the undefined value management, if the index
key is totally undefined, the particular row is not indexed [11]
[15]. As a result, if there is a possibility the result set contains
also rows with undefined index keys, a particular index
cannot be used, at all. There are several index access methods
to be used. The first category is formed by the Index Unique
and Index range scan, defined by the direct conditions to be

evaluated. The output of such methods is a list of ROWIDs
to be consecutively processed by loading a particular block to
the memory Buffer cache for the evaluation (provided by the
Table Access by Index ROWID method). The second
category is covered by the scanning full index. Index Full
Scan operates the reading of all entries in a given index using
the fact, that the leaf data layer is sorted based on the index
key. Index Fast Full scan method uses the fact the index
contains all the required data. So, it uses a sequential scanning
operation of the whole index, which is significantly smaller
compared to the table. Moreover, the structure is optimized,
regarding the free blocks and fragmentations [12] [14].
A specific method is related to the Skip scanning introduced
by the DBS Oracle. It can be used for multi-attribute keys by
skipping a leading attribute of it, based on the selectivity
expressing the ratio between the number of distinct index
keys and the total number of records.

When dealing with indexing, a critical task is related to
index suitability. If the index key is not relevant for the query
processing and data access generally, a particular index is
excluded from the potential set of access methods. If no
suitable index is present, the table must be sequentially
scanned, block by block using the Table Access Full (TAF)
access method. This method is the most demanding, each
block must be memory transferred and evaluated, up to the
upper border, pointed by the High Water Mark (HWM).
Whereas the blocks are not created and deallocated separately
but are covered by the extent forming a set of blocks to be
allocated at once, even empty blocks can be present. Also,
after the data Updates, Deletes, and shift to the archive
repository, analytical environment, or data warehouses,
empty blocks can be present. Another problem related to the
performance is just the data block fragmentation. The Master
index discussed in [11] can be used to access only blocks with
some data tuples. Thus, rather than holding ROWIDs inside
the block, the Master index uses just the compressed list of
blocks holding the data.

Among the B+tree, there are several other index structures
and enhancements, like bitmap indexes commonly used by
the data warehouses and marts [1] or hash indexes [6].

There are also other optimization techniques related to data
block management and physical storage, like partitioning [4],
compression [15], and data and index distribution [6] [16]
[17]. However, whatever technique is used, the important
element is just the block holding the data.

In the next section, we will analyze existing technical types
and hardware equipment serving the data in a block structure.

IV. DISC TYPES

Over the decades, several disc types have been used, and
many of them are still present in database systems, mostly in
a test environment, but there are also many equipment pieces
even powered by physical hard drives. In this section, we will
summarize individual types used for the consecutive
evaluation study to highlight the performance impacts and
benefits caused by the shift to newer and better technology
and to highlight the processing improvements. Several
studies comparing various disc types are present, but database
processing and block management differ from the common
office or gaming world, therefore in this paper, a study related
to database systems is present.

Hard drives (HDDs) are traditional storage devices with
the various number of spinning platters holding the data. Each
platter is covered by a ferromagnetic coating. The direction
of the magnetization represents individual bits. To access a
particular segment, rotation must be done, and the disc head
arm identifies it, extracts the data, and shift them to the
memory for evaluation. Similar step order is used for the
writing process. This disc type was primarily used on
personal computers and servers until the 2000s, characterized
by 7200 rotations per minute for 3.5 inches. Smaller size
HDDs used 5400 rotations and were used in mobile devices
and laptops. Vice versa, some solutions used discs with
10000 rotations per minute. Since the HDDs are completely
mechanical, the hard drive is the slowest and most fragile
component of the whole equipment. On the other hand,
HDDs are cheap and have a longer lifespan compared to SSD.

Solid state discs (SSDs) are faster, quieter, and smaller
with no mechanical parts inside making them more durable.
Moreover, they consume less energy and are shock-resistant.
On the other hand, SSDs are more expensive and offer a
smaller capacity compared to HDDs. The usage of SSD and
its lifetime is more limited. The data recovery after the SSD
drive crash is more complicated and demanding.

The speed difference between the HDD and SSD types is
significant. Many studies have been performed, focusing on
the sequential read/write operations of large files, like video
movies, by which the copying process was less than 10
seconds, compared to the two minutes required for HDDs.
When dealing with small files, the speed ranges from 0.1 to
2 MB/s, while SSDs operate ranging from 50 up to more than
250 MB/s for the newest NVMe memory types. The
performance comparison was mostly operated on large files
or covered by the gaming environment. The situation in
database systems is, however, significantly different. The
files are commonly large, but the operational level is done on
the block granularity, which can, however, differ from the
operating system block. In the case of using a database index,
individual blocks are spread across the disc, when using
sequential scanning, individual extent can group physical
blocks in the neighborhood.

Non-Volatile Memory Express (NVMe) is
a communication interface and driver defining the feature and
command set for PCIe-based SSD drives. It communicates
between the storage interface and the System CPU using
high-speed PCIe sockets by lowering the latency and
increasing the queue number and commands per queue. It
does not communicate with the SATA controller, instead,
direct system CPU communication is done.

Except for the physical disc types directly connected to the
server motherboard, during the performance evaluation
study, we will also highlight external drives and individual
connection types, using the USB 2.0, USB 3.1, and USB-C
standards. A specific approach is covered by the flash discs,
which can easily extend the storage capacity. Although they
are primarily used for data file transfer and local file backups,
during the evaluation study, we will evaluate their usability
in a database system for holding data.

V. STATE OF ART & RESEARCH PERSPECTIVES

Solid-state discs have been hugely used in database
technology. In [21], a discussion about the HDD and SSD
disc comparison is present. Whereas the disc capacity of the

SSD discs is still limited, it is necessary to build a robust
solution combining both technologies. The proposed solution
of that paper is based on a priority-based data placement
method considering an integrated mechanism and migration
rules between HDD and SSD discs.

Another limitation of SSD drives relates to their life. In [7],
SSD internal implementations are highlighted, by
demonstrating how a database engine can be optimized for
a particular device by learning its hidden parameters.
Although it does not have a direct impact on the performance,
it can potentially increase the lifetime of the disc storage. In
that paper, multiple rules to analyze the I/O approach and
transfer techniques are proposed, focusing on the size and
data location profiles.

Relation to the astronomical database is discussed in [3],
focusing on the query planning and optimization algorithms.
The evaluation is based on the single instance PostgreSQL
databases using Quad Tree Cube indexes. In comparison with
sequential techniques, the proposed solution of the paper
reaches a 28.40 improvement factor by speeding up ratios to
3.7 observing CPU and disc access using intensive
computations.

Currently, in-memory databases are becoming spread
providing robust performance and direct access. On the other
hand, such services lack the complexity of durability and
recovery management. SSDs can provide the high
performance these services require. In [13], performance
profiling information is analyzed to shift the in-memory
options to the high-performance SSD drives by tracking the
I/O request granularity. Fig. 3 shows the data transfer
perspectives related to the SQL command, related to the
paper [13].

Fig. 3. Data management access during the query [13]

The storage subsystem has undergone huge innovations
over the last years to cover the data amount demand increase.
NVMe type provides a strong performance by pointing to the
latency and peak bandwidth. Based on the performance study
covered in [20], they should be preferred for data-intensive
applications with a high rate of I/O operations. That paper
provides in/depth performance analysis of NVMe discs. It
relates to the individual parameters and impacts on NoSQL
databases.

All the above papers provide sufficient study for data
management across the disc-type portfolio, focusing on the
data in general. This paper aims to highlight various
architectures in terms of connection details and parameters,
delimited by the temporal architecture, by which the data can
be fragmented across the data blocks. It does not rely only on

the data themselves, the emphasis is done on the indexing and
size aspects.

VI. EVALUATION STUDY

Evaluation of the disc types related to the database system
performance was performed in Oracle Database 19c
Enterprise Edition (Release 19.0.0.0.0 Production) system.
It used multi-tenant RAC container database architecture.

Server parameters are:

 Processor: AMD Ryzen 5 Pro 5650 2.3GHz
 Operating memory: 64 GB, DDR4 3200MHz,
 Disc storage for the root container: 2TB PCIe

Gen3 x4 NVMe v1.4, reading 3500 MB/s.
The server used Windows Server 2019 Standard Edition

operating system, which is stored in a separate NVMe disc.
The whole performance evaluation study is divided into
multiple parts. The first part deals with the tablespace
definition. The second evaluated part relates to the processing
time of table definition and loading it using a conventional
Insert statement. The third category deals with the costs of the
database index definitions. The fourth part emphasizes the
data retrieval process, followed by the Update and Delete
statements.

The interconnection between the server and disc storage
used an external interface USB 3.1 or USB 3c. The reason
for the separation is based on the disc arrays, which are
commonly used. Moreover, existing systems generally do not
offer new technologies, which can be placed directly inside
and the separation of the hardware is also beneficial.

A spatio-temporal database structure was used [5] [6],
dealing with air transport. A table consisted of five attributes
describing the flight unique identifier of the flight
(NUMBER(38)), sequence_number of the obtained value
related to the flight (NUMBER(38)), airspace assignment and
reference (VARCHAR(10)), entry and exit time of the
particular airspace using second precision (DATE data type).

The total number of data for the table was 4 948 094,
characterized by the flight positions across airspace regions in
Europe. Examples of the data are in fig. 4:

Fig. 4. Solution Shrinking space module architecture

The most common disc types used in the database servers
were used for the evaluation, focusing on the overall impacts,
processing time, and costs:

 WD 4 TB 3.5, 7200 rps, NAS optimized (D1),
 WD 500 GB 2.5, 5400 rps, server optimized

using internal buffer (D2),
 WD 256 GB 2.5, SSD (D3),
 WD 5 TB, HDD, 2.5 external, 5400 rps, USB 3.1

(D4),
 WD 5 TB, HDD, 2.5 external, 540 0rps, USB 3c

(D5),
 WD 128 GB, NVMe internal, PCIe Gen1 (D6),
 WD 256 GB, NVMe internal, PCIe Gen3 x4

NVMe v1.4 (D7).

 The used block size was 8kB (letting the system use the
default option). For the study reference, notations D1 D7
were used.

A. Tablespace definition

Each data file is part of the tablespace used for the reference,
as well as other parameters delimiting the structure. Disc
storage capacity was extended by the Autoextend option, the
original size of the file was 1 MB and 100 MB. Tab. 1 shows
the results expressed in processing time (s).

TABLE I. RESULTS TABLESPACE DEFINITION PROCESSING TIME
DEMANDS

 D1 D2 D3 D4 D5 D6 D7
1 MB 0.389

0.796

0.598

0.740

0.663

0.370

0.271

100 MB 1.029

1.640

1.031

1.596

1.466

1.512

0.983

The results can be categorized into three architectures and

storage principles. The first category covers the conventional
discs, by which the NAS technology can be highlighted. By
switching from a 7200 rotation speed to 5400, which reflects
75%, the processing time ratio for the tablespace definition is
103,86%. 2.5 SSD disc requires 0.796s for 1 MB and 1.640s
for 100 MB. The difference between conventional and SSD
2.5 relates to 24.84% or 43.35% respectively, preferring SSD.
Switching from the USB 3.1 to USB 3c connection interface
brings 10.42% for 1MB and 9.29% for 100MB. Thus, it is
evident, that the connection definition is significant for the
tablespace definition, related to the maximum transfer speed
and operation. Generations of NVMe cards are also
important. NVMe generally does not need to bring
performance improvements, compared to the NAS rotational
discs. On the other hand, Generation 3 lowers the processing
time demands up to 4.96% (reference D1) primarily used for
NAS. However, compared to the 2.5 discs, processing time
can be lowered up to 40.62%. SSD vs. 3rd generation of
NVMe reflects 5.32% improvements.

B. Table definition + Insert operations

This evaluation study highlights the table definition,
extended by the loading process using conventional Insert
statements. No secondary indexes were defined, the integrity
refers just to the data modeling domain and column
integrity. Tab. 2 shows the results. It is evident the NVMe
discs do not bring sufficient performance shift, whereas they
are mostly optimized for the data retrieval process. On the
other hand, the size of the rotational disc can strongly affect
the performance, namely, D2 requires more than 35 seconds
for the processing, whereas D1 reflects just 22.7 seconds,
expressing 64.51% improvements. Interesting results were
obtained by the D3. It was assumed, that the results should be
better, compared to the rotational discs, whereas it is SSD
type. After a deeper analysis, it can be concluded, that the
NAS discs use additional internal data buffers in SSD style,
which reduces the differences. Moreover, the table and data
definition are not devoted just to the data transfer, transaction
management, logging, consistency, and integrity must be
covered. However, all these data are stored in a root
container, not the pluggable disc.

TABLE II. RESULTS INSERT STATEMENT

D1 D2 D3 D4 D5 D6 D7
processing
time (s)

21.673 35.654 28.522 24.440 20.903 20.845 18.248

C. Index definition

Before dealing with the data retrieval process, index
definition is emphasized, whereas it covers one of the
milestones of the performance of the whole system, reducing
the data block number to be treated. By using the index,
sequential scanning is limited, replaced by precise block
identification using an index. Five indexes were created, the
first is based on the sequential number only, and the second
index used sequential number and temporal attributes in the
second and third positions. The third index is similar to the
second, but the order of attributes is changed, preferring
temporal elements. The fourth index is function-based, and
takes an hour in a 24-hour format of the entry time, followed
by the exit time and sequential number. The fifth index is also
function-based, the structure is similar, however, a 12-hour
format is used, instead. All indexes used the pre-created
tablespace in the same storage type as the table data
themselves. They were B+tree-oriented.

create index I1 on flights(sequence_number);
create index I2
 on flights(sequence_number, entry_time, exit_time);
create index I3
 on flights(entry_time, exit_time, sequence_number)
create index I4
 on flights(to_char(entry_time, 'HH24'),
 exit_time, sequence_number);
create index I5
 on flights(to_char(entry_time, 'HH'),
 exit_time, sequence_number);

Processing time for the index definitions is shown in tab. 3.

TABLE III. RESULTS INDEX MANAGEMENT

D1 D2 D3 D4 D5 D6 D7

I1 17.196 21.077 15.301 18.544 18.008 15.785 10.068

I2 22.051 31.119 20.273 24.583 22.381 19.517 12.948

I3 22.412 31.057 20.449 24.352 22.635 19.012 17.042

I4 16.845 20.541 14.321 17.862 17.262 15.359 9.772

I5 16.652 20.388 14.024 17.511 17.012 14.895 9.209

The ratio between the index and table definition is
analogous. I1 refers to a single attribute, while I2 is extended
by the time perspectives, giving the additional demands of 20
to 30%. D7 uses specific data structure optimization, related
to the 3rd NVMe generation, taking 22.23%.

The order of attributes inside the index does not play any
role and the processing time differences are negligible, as
expressed in fig. 5.

Similar results were obtained in the function-based index.
I4 takes a 24-hour format, the whole 12-hour is used for I5.
The processing time for the definition is almost the same. Fig.
6 shows the results in a graphical representation.

Fig. 5. Index definition processing time

Fig. 6. Index definition processing time

D. Data retrieval process

Query evaluation and result set building is a complex
staged process, based on the execution plan, which selects the
best suitable access path. During the performance evaluation,
processing time was reflected, focusing on index usage.
Sequential scanning of the block set regardless of the created
indexes is delimited by the Table Access Full method (TAF).
By using the index, Range Scan (IRS) is generally used, based
on the conditions of the query. For the evaluation, Index Fast
Full Scan (IFFS) method was also used.

During the evaluation, the following Select statements
were used, covering the aggregate functions (S1), selection
with no projection (S2), selection with Date spectrum
projection (S3), and condition-based Date and Time
management (S4):

S1: select count(*) from flights where sequence_number=0;
S2: select * from flights where sequence_number=0;
S3: select entry_time, exit_time from flights
 where sequence_number=0;
S4: select * from flights
 where sequence_number=0
 and to_char(entry_time, 'HH24')=5;

For the S3, various index sets were created and evaluated.
Each experiment consisted of just one index, highlighting its
usage and data access method. Indexes and Data tables were
part of the same tablespace:

create index I1 on flights(sequence_number);
create index I2 on flights(sequence_number, entry_time,
 exit_time);

create index I3 on flights(entry_time, exit_time,
 sequence_number);

 Individual indexes highlight the order of attributes covered
by them. The optimal index order for the query starts with the
Where condition and JOIN criteria, followed by the Select
clause attributes or function-based usage.
 For S4 evaluation, the following function-based indexes
were created, referencing the Date and Time perspective. Note
the hour extraction format for the indexes.

create index X1 on flights(entry_time, exit_time,
 sequence_number);
create index X2 on flights(to_char(entry_time, 'HH24'),
 exit_time, sequence_number);

create index X3 on flights(to_char(entry_time, 'HH'),
 exit_time, sequence_number);
create index X4 on flights(to_char(entry_time, 'HH24'),
 sequence_number, exit_time);

TABLE IV. DATA RETRIEVAL PERFORMANCE

Query Index Used
method

D1 D2 D3 D4 D5 D6 D7

S1 None TAF 02.36 03.12 02.12 03:02 02:51 00.82 00.51
S2 None TAF 01.10 01.93 01.01 00.36 00.34 00.43 00.31
S3 None TAF 01.24 01.78 01.03 00.39 00.30 00.44 00.30
S3 I1 TAF 01.22 01.80 01.05 00.39 00.34 00.46 00.27
S3 I2 IRS 00.73 00.99 00.70 00.31 00.27 00.37 00.25
S3 I3 IFFS 01.02 01.36 00.83 00.33 00.30 00.43 00.26
S4 X1 TAF 00.99 01.38 00.86 00.37 00.34 00.41 00.26
S4 X2 TAF 01.13 01.44 00.85 00.30 00.34 00.43 00.27
S4 X3 TAF 01.06 01.42 00.84 00.33 00.35 00.45 00.24
S4 X4 TAF 01.08 01.41 00.92 00.33 00.36 00.44 00.27

 The results are summarized in Tab. 4. The additional
required demands comparing 3.5 and 2.5 discs reference range
from 26% to 44%. A special case is covered by the S2
statement, which brings additional processing time demands
using 68.75%. The reason is based on getting the whole
attribute set, not just the tuple tick used in S1. Generally, SSD
discs lower the processing time demands from 31% to 41%,
whereas the block can be faster located and accessed,
compared to the rotation waiting time in conventional discs.
The best solution is done by the NVMe discs. Any generation
of such discs brings significant performance benefits. When
dealing with the whole block set management in S2, the total
processing time demands are lowered from 1.12s to 0.29,
expressing only 25.89%.
 Reflecting the index definition and usage, range scanning
brings expected results since only the blocks relevant to the
given query are loaded. An inverse relationship can be
identified, as the disk quality and access to blocks increase,
the overall benefit decreases, ranging from 11.54 for NVMe
up to 45.25% for rotational discs. IFFS can be considered as
an interlayer solution between TAF and IRS.
S4 deals with the hour extraction from the Date value attribute
ENTRY_TIME. Associated indexes deal with the hour
extraction in 12 and 24-hour format. Reflecting the results, the
database optimizer does not use any index, whereas all data
attributes need to be extracted from the result set.
 During this study, the impact of high-performance mobile
USB sticks was analyzed. The selection was based on speed.

SSD hybrid drive was required. Two drives were used
Samsung 3.1 Flash drive 256 GB and Kingson HyperX 256
GB, reading speed 350 MB/s, writing speed 250 MB/s.
Comparing the results with NVMe discs, analogous
performance was reached, however, just for the data retrieval
process. Although the access and transfer speed of the NVMe
discs is far higher, whereas the retrieval is based on
transferring small blocks, overall speed and technology cannot
be properly used. On the other hand, other operations
changing the data do not provide sufficient results in terms of
performance. Thus, such sticks can be alternatively used just
for the static data, which do not evolve and change values over
time.
 Concluding the data retrieval process study, it is evident,
that the physical storage layer brings significant performance
improvements. Moving from the conventional rotational discs
to fast NVMe cards is the best solution by lowering access
delays and block location necessity. On the other hand, to
reach a stable and robust performance, a suitable index set
must be developed and handled, referencing the used query
types. Although the amount of data based on the Where
condition is reduced, necessary function calls and extraction
brings additional demands. In the end, although the number of
blocks is reduced, almost the same performance expressed by
the processing time is reached, because for each record it is
necessary to evaluate the fulfillment of the condition through
a function call.

E. Update and Delete operations

Update operation requires particular block identification,
followed by the content change. For this evaluation study, the
block change description is copied to the physical repository
by reaching commit. The Update statements were performed.
The first type adds one hour to the original value of the entry
and end time. Although the original values are changed, the
size of the row remains the same, so there is no problem with
data migration.
 A more complicated case is done by the air space
reference. After the Update statement, the whole string is
filled, 10 bytes. The original size characteristics are in tab. 5.
Update statement refers just to the first reference of the
particular flight by using the condition limiting the sequential
number to value zero.

TABLE V. STORAGE DEMAND SIZE CATEGORIES

length count
4 8336
7 4241018
8 698740

Tab. 6 shows the results for the following Update
statements.

update flights -- U1
 set entry_time=entry_time + 1/24
 where sequence_number=0;
update flights -- U2
 set fir_id=dbms_random.string('a', 10)
 where sequence_number=0;

TABLE VI. RESULTS UPDATE STATEMENT

 D1 D2 D3 D4 D5 D6 D7
U1 17.198 21.089 15.303 18.539 18.032 15.786 10.064
U2 22.055 31.122 20.264 24.565 22.365 19.513 12.937

Comparing conventional discs pointing to the rotation
speed, 7200 rps lowers the processing time demands in U1
using 3.887s, which relates to 22.61%. For U2, it reflects
9.061s (41.06%). The best performance of the rotational disc
provides D1. However, if we compare it to the best NVMe
drive solution (D7), the processing time costs will be reduced
by 7.133s (29.12%) for U1 and 9.113s (41.32%).
The most significant difference ratio between U1 and U2 is
done for D2. The reason is associated with the migrated rows
by extending the structure and storage demands.

Fig. 7. Update statement performance processing time

The last evaluation study deals with the Delete statements.
It was primarily assumed, that there should be a strong relation
to the Update operation, however, the results indicate not so
strong a correlation. In general, it is caused by the block
management of the operating system, which does not
physically replace the values, they are just marked as free.
Thus, there is no necessity to load and rewrite data blocks
physically. Tab. 7 shows the results. For the Delete operation,
the condition relates to the sequence number:

delete from flights where sequence_number=0;

TABLE VII. RESULTS DELETE THE STATEMENT

D1 D2 D3 D4 D5 D6 D7
D 2.369 2.377 2.054 2.273 2.031 2.001 1.953

A graphical representation of the Delete operation is in
fig. 8.

Fig. 8. Delete statement performance processing time

VII. CONCLUSIONS

A database environment is formed by a complex system.
Each database is formed by the physical storage located on the

discs, which can have various characteristics, interfaces,
speed, and block location principles. In this paper, we have
focused on the various disc storage orientation, from
conventional rotational discs through solid-state drives, up to
the current trend of NVMe discs, which are commonly used
in Cloud environments. The computational study was
performed using a traditional server, focusing on HDDs, SSDs
and NVMe drive with multiple configurations and access
interfaces (USB 3.1 and USB 3c). During the evaluation,
several streams were reflected data table modeling, Insert,
Update, Delete and Select operations, supervised by the index
treatment. The most valuable aspect is related to the Delete
operation, by which the results are not highly dependent on
the used disc. Namely, individual blocks are not accessed,
instead, they are just marked as free in the operating system
manner. Thus, the results across the platforms are almost the
same.

From the overall perspective, the most powerful disc type
is NVMe, however, the emphasis should be done on the
generation and other parameters, like transfer speed or read
and write operation differentiation, whereas there are various
standards to be applied. Drives, which are primarily used for
NAS storage also provide a relevant solution, whereas they
contain buffers for data transfer load balancing.

This paper deals with the various disc types for reference.
Disc storage perspective and the hardware itself is, however,
just one aspect of the performance. To reach the complexity,
robustness, and transparency of the whole system, it is
necessary to emphasize the database system architecture,
instance parameters, memory size, and data access. Although
this paper refers to the index definition, data distribution,
partitioning, block size, and other capabilities must be
handled. In the future, our focus will be on the table and index
separation into multiple tablespaces, referenced by various
block sizes and granularity. The emphasis will also be related
to the pre-fetching and memory Buffer cache optimization.

ACKNOWLEDGMENT

This publication was realized with support of Operational
Program Integrated Infrastructure 2014 - 2020 of the project:
Intelligent operating and processing systems for UAVs, code ITMS
313011V422, co-financed by the European Regional Development
Fund.

It was partially supported by the Erasmus+ projects:
Project number: 2022-1-SK01-KA220-HED-000089149,
Project title: Including EVERyone in GREEN Data
Analysis.
Project number: 2020-1-HR01-KA226-HE-094713, Project
title: Cloud cOmputing for Digital Education Innovation.
Project number: 2021-1-SI01-KA220-HED-000032218,
Project title: Better Employability for Everyone with APEX.

REFERENCES

[1] J. Delplanque, A. Etien,

International Conference on Software Maintenance and Evolution,
ICSME 2018, Spain, 2018, pp. 635-644

[2] design for
parallel coloring of a set of graphs in the High-Performance

Conference on Informatics. pp 93-99. ISBN 978-1-7281-3178-8.

[3] - -A
parallel model for SQL astronomical databases based on solid state

Astronomy Journal, Volume 20, 2017.
https://doi.org/10.1016/j.ascom.2017.03.006

[4]

Proceedings of 2020 IEEE International Conference on Artificial
Intelligence and Computer Applications, ICAICA 2020. 1277 1279
(2020). https://doi.org/10.1109/ICAICA50127.2020.9182496

[5] -temporal data
Kaufmann, 2014.

[6] H. Kriegel, P., Kunath, M. Pfeifle, and

Conference on Scientific and Statistical Database Management, 2003

[7]
Hidden Parameters of
4, 2019. https://doi.org/10.14778/3372716.3372724

[8] D. Kuhn and T. Kyte, Expert Oracle Database Architecture:
Techniques and Solutions for High Performance and Producitivity.
2021, ISBN 9781484274989

[9] D. Kuhn and T. Kyte, Oracle Database Transactions and Locking
Revealed. Oracle Database Transactions and Locking Revealed.
(2021). https://doi.org/10.1007/978-1-4842-6425-6

[10]
analysis of multi-state systems based on integrated direct partial logic

Digital Technologies, 2015, pp. 183 195.

[11]

[12]

Analysis and Machine Intelligence, vol. 7, 2021, pp. 1-25.

[13]
between In-Memory Databases and Solid-
2020, http://cidrdb.org/cidr2020/papers/p19-lerner-cidr20.pdf

[14] -Index

Transactions on Human-Machine Systems. (2022).
https://doi.org/10.1109/THMS.2021.3133807

[15]
13th International Conference on Frontiers of Information Technology
(FIT), 2015.

[16] -Memory on
Active Data Guard: Real-
IEEE 36th International Conference on Data Engineering (ICDE), 20-
24 April 2020

[17] O. Rolik, K. Ulianytska, M. Khmeliuk, V. Khmeliuk, U. Kolomiiets,

225 (2022).
https://doi.org/10.1109/ATIT54053.2021.9678605

[18]
Categorical Approach to Semantics of Relational First-
Symmetry-Basel, Vol. 12, No. 10, MDPI, OCT 2020,
doi: 10.3390/sym12101584

[19] Threat Defense: Cyber Deception
Approach and Education for Resilience in Hybrid Threats Model
Symmetry-Basel, Volume 13, Issue 4, 2021.

[20] [

Proceedings of the 8th ACM International Systems and Storage
Conference, 2015, https://doi.org/10.1145/2757667.2757684

[21] -based data placement
method for databases using solid-
Proceedings of the 2018 Conference on Research in Adaptive and
Convergent Systems, 2018, https://doi.org/10.1145/3264746.3264769

[22] https://www.oracle.com/cloud

