
SAMI 2024

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permit-
ted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this

-

 Part Number ISBN

Organizers and Sponsors

Sponsors

Technical Co-Sponsor

3

Welcome from the Chairs

Computational Intelligence and Intelligent Technologies are very important tools in building intelligent
systems with various degree of autonomous behavior. These groups of tools support such features as ability
to learn and adaptability of the intelligent systems in various types of environments and situations. The
current and future Information Society is expecting to be implemented with the framework of the Ambient
Intelligence (AmI) approach into technologies and everyday life. These accomplishments provide the wide
range of application potentials for Machine Intelligence tools to support the AmI concept implementation.
The number of studies indicates that this approach is inevitable and will play essential and central role in the
development of Information Society in close future.

mankind to improve and keep the ideas of humanity and democracy.

The role of Machine Intelligence Quotient will play an important role in the future to be able to evaluate the
degree of the autonomous behavior of the designed system. It is belief that it will be domain oriented problem
and should also be important to use this information for decisions made by humans e.g. in evaluation of
many information system in commercial tender to pick up the system with the highest MIQ. The usefulness

commercial aspects of the CI application in various systems. The commercial need to have “intelligent”
solution and products should increase the interest for MI tools.

pure computer science. We do believe that this multidisciplinarity will be very useful to emerge more AI
applications in Information Society and will help making products and solutions more “intelligent”.

This proceedings is a small contribution of knowledge dissemination and presentation of important problems
and advances in Computational intelligence theory and applications. Hungary and Slovakia as members of

Levente Kovács and Liberios Vokorokos
General Chairs

4

Committees
General Chairs

Levente Kovács, Óbuda University, Budapest, Hungary
Liberios Vokorokos, Technical University of Košice, Slovakia

Founding Honorary Chair
Imre J. Rudas, Óbuda University, Budapest, Hungary

Honorary Committee
Stanislav Kmet , Technical University of Košice, Slovakia

Levente Kovács, Óbuda University, Budapest, Hungary
Peter Mésároš, Technical University of Košice, Slovakia

Philip Chen, University of Macau, Macau
Paolo Dario, Scuola Superiore Sant’Anna, Italy
Paolo Fiorini, University of Verona, Italy
Hamido Fujita, Iwate Prefectural University, Japan

Tamás Haidegger, Óbuda University, Budapest, Hungary
Keith Heipel, University of Waterloo, Canada
Oussama Khatib, Stanford University, USA
Kazuhiro Kosuge, Tohoku University, Japan

Ren Luo, National Taiwan University, Taiwan
Vincenzo Piuri, Universita’ degli Studi di Milano, Italy
Bruno Siciliano, University of Naples, Italy

Masayoshi Tomizuka, University of California, Berkeley, USA
Jacek Zurada, University of Louisville, USA

International Organizing Committee Co-Chairs

Marián Bucko, Elfa, Slovakia

Norbert Ádám, Technical University of Košice, Slovakia

Technical Program Committee Chairs
Szilveszter Kovács, University of Miskolc, Hungary
Rudolf Andoga, Technical University of Košice, Slovakia
Ivana Budinska, Slovak Academy of Science, Slovakia

Technical Program Committee
Norbert Ádám, Technical University of Košice, Slovakia
Rudolf Andoga, Technical University of Košice, Slovakia

Peter Bednár, Technical University of Kosice, Slovakia

5

Secretary General

6

8

000010

Top data analysis performance – case study

Michal Kvet, Marek Kvet

Department of Informatics, Faculty of Management Science and Informatics

University of Žilina

Žilina, Slovakia

Michal.Kvet@uniza.sk, Marek.Kvet@uniza.sk

Abstract—Obtaining top data based on defined criteria

requires sorting the data, which can be applied to all data in one

group or to individual data partitions specified in analytical

functions. The limitation of the database system performance is

associated with the cardinality of the data set processed in the

individual evaluation steps, especially regarding data

warehouses and large sets that need to be joined. However, most

of the data are refused while maintaining only top data. Many

solutions are available, but the significant aspect is related to the

performance from the system resources and time consumption

point of view. This paper aims to analyze individual solutions

and techniques and provide a methodology for processing top

data not only in the data warehouse but also in an online

transaction processing environment limiting the index number

range.

Keywords—Data analytics, Oracle Database, Performance,

Transaction database, Indexing, Warehouses

I. INTRODUCTION

The data amount to be handled is still rising, shifting the
processing from the conventional sphere dealing with only
current valid data to the temporal environment, allowing
monitoring of the data evolution in the whole time spectrum
[1]. Several metrics categorize the data based on the origin,
format, applicability, reliability, as well as precision frame and
time reference [1] [4] [5] [15]. Temporal databases are
continuously developed and improved, starting from the
object level architecture enhancing the original object
identifier by the validity time frames through the attribute-
oriented granularity encapsulating each data column with the
time reference, up to synchronization groups, which
emphasize data value as a core granularity [3]. Data value can
reflect either the attribute itself or a set of attributes, which are
temporally treated as one segment. Thanks to that, disc storage
demands and the process of obtaining object state at the
defined timestamp is done easier and faster. Temporal
architectures form the interlayer between conventional
relational data management and data warehouses, offering the
layer for data analytics. Currently, complex data sets to be
analyzed can originate from various sources and can be stored
in any database system and architecture [2] [11] [12].

Data to be analyzed can be stored in the online transaction
processing system, characterized by the short transactions
getting new data or modifying existing. In the temporal
environment, the update operation is rather logical, while it
always forces the system to create a new state and persist the
whole evolution. However, there can also be requirements to
correct already stored and loaded data by introducing multiple
temporal spheres – validity, transaction reference, up to IPLT
models delimited by multiple timestamps for each data node
– input stream (adding a record to the input queue for
processing), processing timestamp, load timestamp, and
transaction completion time record. All these temporal

references are essential in real-time processing systems, where
any delay can be critical [9].

In addition, the data to be analyzed, can be stored in
extensive data structures, mainly in data warehouses, mostly
determined by the star schema, marts, or their subvariants and
extensions [12] [13] [16]. It is usually necessary to obtain the
most critical data, the most significant changes, the fastest
time, and simply top data based on defined criteria. Thus, the
data need to be sorted and then evaluated. The process is
relatively straightforward if the index for those criteria is
present. Simply, leaf nodes are treated, and top data are
obtained and processed. However, if there is no suitable index
and the data set is critically huge, the performance can
degrade. Furthermore, if the original data set must be joined
to other tables, cardinality can significantly rise. On the other
hand, it should be kept in mind that we still only need to obtain
the top data, and thus, most of the originally sorted data do not
need to be longer processed.

The proposed paper aims to analyze the performance of
the queries getting top data regardless of the data storage,
architecture, and infrastructure, operated by the SQL
language. It uses three data sets with various cardinality to
declare the robustness operated by the scalability option. We
do not intend to combine and evaluate multiple database
systems. Instead, the focus is on the Oracle Database, which
forms the most relevant database structure for complex data
analytics in the cloud environment, even enhanced by
machine learning techniques to get the prognoses, identify
patterns, etc. Furthermore, the Oracle Database is the most
powerful and scalable system in terms of accessibility through
indexes, data loading and dynamic parameters for the memory
structure size. Finally, this paper is supported by the
EverGreen project [18] dealing with environmental green data
analytics, in which Oracle Corporation acts as an associated
partner.

The structure of the paper is as follows. Section 2 deals
with the problem definition, escalating the execution plan of
the Select statement. Section 3 references indexing strategies
and methods for table joining. Section 4 enhances data
analytics, top data meaning, and reference, followed by the
individual analytic-oriented clauses and window frames. The
evaluation techniques and strategy are discussed in section 5.
Performance study is presented in section 6, forming the
results and methodology for getting top data in an
performance-efficient way.

II. EXECUTION PLAN

SQL is a non-procedural language in which user just

specifies what data should be provided and output format, but

the internal process of data access must be selected by the

database optimizer and transaction manager. Query

optimization and selecting an access path is one of the most

critical operations, and it strongly influences the performance

SAMI 2024 • IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics • January 25-27, 2024 • Stará Lesná, Slovakia

979-8-3503-1720-6/24/$31.00 ©2024 IEEE 000271

of the query execution. When dealing with the defined

statement, the following steps must be done (Fig. 1) [6] [7]

[8]:

• Parse. Before parsing itself, the defined SQL

statement is transferred from the user process on the

client site to the Oracle interface. The parsing

process then checks the validity of the statement by

verifying the table structures, column definitions,

privileges, etc. Parse locks are applied for all used

structures to ensure that the definitions are not

changed during the operation. The most suitable

execution plan is identified based on the table

statistics, optimization, and heuristics. The selected

execution plan is stored in the shared SQL area

using query hash. Thus, later on, if the analogous

statement is to be executed, the Parse stage can be

omitted and the already pre-defined plan can be

directly applied.

• Query processing ensures read consistency by using

temporary segments. It is also applied for nested

queries.

• Result description phase is used, if the query is

interactively entered by the user and query result

types and formats cannot be directly determined.

• Defining output by specifying the size, variable data

types in PL/SQL to make the system perform

relevant implicit data type conversions, if necessary.

• Binding variables by replacing placeholders with

real values. Using binding queries allows using the

same execution plan for multiple queries differing

just with the condition values.

• Executing statement by ensuring consistency and

integrity. The execution and data access.

The selection of the access path is associated with the

database statistics describing the insight of the table content,

so it is crucial to make them actual. The process of the

execution starts with taking the data sources (tables specified

in the From clause), applying the conditions in the Where

clause, and getting the output structure – projecting the data

in the Select clause. Besides, expressions and functions are

considered across the whole statement definition. Starving

away from aggregation functions and groups definition,

which is done after considering the data source, it is important

to mention that the Where clause specifying conditions is

treated in the first phase. The problem is that the condition

taking top data must be considered after sorting the data.

Thus, the whole data set must be treated, either defined by the

fetch process limiting the output (evaluated after Order by

clause) or by using analytical functions, which encapsulate

Order by definition directly in its specification. One way or

another, all data are processed, joined, and evaluated, and

only then, the top data are selected. The following section

considers the impact of the table index and join operation

methods used by the Oracle Database.

Fig. 1. SQL statement processing phases [7]

III. TABLE INDEX AND JOIN METHODS

An index is an optional structure, which is very effective
for data location using the index key. Generally, B+tree index,
Bitmap index, and Hash index types are used. Oracle Database
no longer support Hash indexes, although its definition can be
partially emulated using function indexes.

Typically, B+tree indexes are used in transaction
processing. They are formed by the balanced index. The
traversing is based on the index key. The leaf node consists of
the ROWID pointers to the particular data row residing in the
block of the data file in the physical storage, operated by the
database layer. Furthermore, the index leaf layer can provide
a sorted list of the data based on the index key, which can be
formed by the data table attributes, or function results can be
used as a key, as well. Index key can be composite, formed by
multiple number of attributes or function calls. Primary keys
and unique constraints are automatically enhanced by the
indexes, but users can also create their own ones to increase
the performance. An example of the B+tree is shown in Fig. 2.
It is suitable for high cardinality, high degree of distinct
columns [7] [17].

Fig. 2. B+tree

For the data warehouses, marts, and any other analytic-
oriented architecture, among B+tree indexes, bitmap indexes
are used, characteristic for the low cardinality columns by
pointing to the OR and AND operations. Bitmap operations
are really fast, so the evaluation and data access can
significantly benefit. On the other hand, a bitmap is strongly
limited by its structure and any change possibilities in terms
of adding new value. Any change in the structure requires
rebuilding the whole index. Therefore, it is mostly applicable
for static historical data located which are not changed.

Accessing the data using the index can bring a markable
improvement since the sequential data block scanning
necessity is replaced by direct access using ROWID pointers
obtained by the index traverse. Thus, the complexity of the
processing is shifted from O(n) to O(log(n)).

A. Join methods

Oracle Database provides three join methods
implementing a logical connection between two sets of data.
The scenario and method selection depends on the available
indexes, the number of estimated rows in each data set, but the
most critical part relates to the table statistics and their
accuracy [10].

Nested loop is the simplest operation. For each record
from the outer input (small table), matching rows are found
from the inner set. The joining is based on the primary
(unique) key and foreign key. A nested loop is selected in case
the foreign key is not indexed. The complexity of the query is
O(N * log(M)). M and N express the cardinality of the data
sets.

M. Kvet and M. Kvet • Top data analysis performance –case study

000272

Merge join method is the most efficient way using the fact
that both sets of data are indexed based on the joining keys.
The complexity is reduced to O(M+N).

Hash match method is an inter solution if the data set to be
joined is large, but not enhanced by the index. In that case, a
temporary hash index is built to split the data into the buckets,
followed by the sequential scanning and mapping, but only
across one bucket, which can be done in parallel, but also data
amount to be treated is strictly limited. The complexity is O(N
* hc + M * hm + C), where N is a smaller data set, hc expresses
the complexity of hash index creation, M refers to the larger
data set cardinality, hm delimits the complexity of the hash
match function. And finally, C addition refers to the
complexity of the dynamic calculation and hash function
creation.

The following section deals with the data analysis pointing
to the top data definition and representation.

IV. DATA ANALYSIS – TOP DATA

Data analysis is the next developmental stage of data
aggregation, which is characterized by reducing the output
data rows – one for each group defined in the Group by clause.
Analytical functions behave differently. Instead of producing
one row for each group, the original data set is retained, and
each row is extended by the partial analytical function result.
By default, for each row, all the preceding rows are
considered, but the behavior can be set using the
windowing_clause of the analytic function by defining the
frame of rows or values that are relevant for processing
particular row values [13] [14].

To get the correct results, the data to be handled must be
sorted using order_by_clause directly embedded in the
analytical function. Thus, instead of considering the whole
data set, the sort operation is done directly inside the analytics.
Besides, the analytical function can be applied for each
partition (specified in the query_partition_clause) separately
by building independent solutions across multiple groups. The
syntax of the analytical functions is shown in Fig. 3.

Fig. 3. Analytical function syntax clauses

To get the top data, analytical functions can provide a
suitable and easy implementable solution. However, what
does the top data actually mean? There are three rules which
can be applied:

• Top-rows rule getting exactly three rows.

• Olympic rule providing gold, silver and bronze the
Olympic way.

• Top-values rule getting all rows that have top-n
values.

The limitation of the top-rows rule is based on the fact that
the fourth row is ignored, even though it has the same value as
the third one. Moreover, it can be said that the selection of the
rows with the same values is random, resulting in the fact that
the same query can later provide different results, even based

on the same input data. The reason is just based on the Order
by clause based on non-unique values.

Tab. 1 shows the function reference for the defined top-
rules.

TABLE I. REFERENCE ANALYTICAL FUNCTIONS

Rule Reference analytical function

Top-rows Row_number

Olympic rule Rank

Top-values Dense_rank

The example for getting top-3 rows is depicted in the next
code snippet. Its goal is to get the longest stay of the plane in
the flight information region (FIR):

As evident from the snippet, analytical functions cannot be
directly placed in the Where clause (referencing FIR regions
in Germany), since the order of conditions to be evaluated is
not strictly specified and depends on the database optimization
process. Besides, not all data are present in the Where clause
compared to the final result set. Therefore, any conditions on
the analytics must be encapsulated, and a nested query must
be created. Specifically, the inner statement calculates the
analytical function result for each row. Then, the outer query
filters the data based on analytics. The statement execution
process is shown in Fig. 4.

Fig. 4. Statement processing steps – left part - one table, right part – JOIN

operation

The first performance limitation relates to the requirement
to process all data based on the defined FIR list, whereas the

select *
 from
 (select flight_id,
 departure_airport, arrival_airport,
 air_company_id,
 row_number() over
 (order by stay_duration desc) as RN
 from flight_data
 where FIR in ('EDGG', 'EDMM', 'EDUU',
 'EDVV', 'EDWW', 'EDYY')
)
 where RN<=3;

SAMI 2024 • IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics • January 25-27, 2024 • Stará Lesná, Slovakia

000273

data need to be sorted and consecutively treated by the
analytical functions. However, if multiple tables need to be
joined and mapped, the problem is even deeper, whereas the
JOIN operation belongs to one of the most demanding
database operations. It should be noted that extensive data sets
are commonly processed in the analytical environment. The
research question is, how to limit the necessity to join all
source data together?

V. STRATEGIES FOR GETTING TOP DATA

For the performance analysis and evaluation, multiple
cases were used to declare the processing time demands and
costs. The data set monitoring the flights was used, delimited
by various cardinalities to declare the scalability of the system:

• CASE 1: taking 10 longest flights. For each flight,

individual FIR (Flight information region) regions

are referenced, enhanced by their parameters at a

given time, while they evolve over time. Three data

query representations are evaluated:

o Q11 using analytical function

row_number, defined in the inner

statement, followed by the filtering based

on it in the outer statement.

o Q12 based on pre-sorting and limiting the

output result set number using Fetch first

clause.

o Q13 postponing JOIN operation to the end

of the query processing.

• CASE 2: taking 10 longest flight for each FIR

assignment processed independently. This is done

by using Partition clause of the analytical function.

Following query representations are evaluated:

o Q21 using analytical function

row_number, defined in the inner

statement, followed by the filtering based

on it in outer statement.

o Q22 using JOIN LATERAL allowing to

dynamically join data on the run.

o Fetch first clause cannot be used, whereas

it does not work for multiple partitions.
CASE 2 has two variants to be evaluated – partition

defined by one attribute (CASE 2a) and partition enhanced by
the composite key formed by two attributes (CASE 2b).

For both cases, the sotring rule was based on the table
attribute, or the function call was used to focus on the attribute
encapsulation in the function call.

VI. PERFORMANCE

For the computational study, a server with the following

parameters was used:

• Operating system: Windows Server 2020

• Processor: AMD Ryzen 5 PRO 5650U with Radeon

Graphics, 2.30 GHz

• Memory: 2x 32 GB DDR-4, 3200MHz, CL20

• Disc storage: 2 TB, NVMe, read/write 3500 MB/s

As stated, Oracle Database was used delimited by the

version Oracle Database 21c Enterprise Edition Release
21.0.0.0.0 – Production Version 21.3.0.0.0. Three data sets
were used, differentiated by the cardinality. Two tables were
referenced – the FIR table took 100 rows describing the
temporal parameters and assignments of the FIR. Each row
took 1024 KB. The smallest fragment of the flight data
consisted of 10 000 rows. The example of the flight data is
depicted in Fig. 5. Each flight is identified by the ECTRL_ID
and set of obtained data monitoring the flight
(Sequence_number), current flight parameters, and
assignment to the FIR (AUA_ID). That assignment is
temporally bordered using Entry_Time and Exit_Time.

As described in the previous section, two cases were used.
In this section, results are provided and discussed.

CASE 1 is associated with one group only. Order By
clause was done on the single attribute, then enhanced by the

Q11:
select *
 from
 (select fir_parameters(temporal), air_company_data,
 flight_data,
 row_number() over(order by ectrl_id) as rn
 from flight_data join fir using(fir_ref)
 join air_company using(comp_ref)
)
 where rn<=10;

Q12:
select fir_parameters(temporal), air_company_data, flight_data
 from flight_data join fir using(fir_ref)
 join air_company using(comp_ref)
 order by ectrl_id
 fetch first 10 rows only;

Q13:
select fir_parameters(temporal),
 air_company_data, flight_data, rn
from
 (select *
 from
 (select flight_data,
 row_number() over(order by ectrl_id) as rn
 from flight_data
)
 where rn<=10) inner
 join fir using(fir_ref)
 join air_company using(comp_ref);

Q21:
select *
 from
 (select fir_parameter), air_company_data,
 flight_data,
 row_number() over(partition by fir_list_seq
 order by ectrl_id) as rn
 from flight_data join fir using(fir_ref)
 join air_company using(comp_ref)
)
 where rn<=10;

Q22:
select fir.*, inner.*
 from fir + air_company
 cross join lateral
 (select * from flight_data fd
 where fd.fir_list_seq=fir.fir_ref
 order by ectrl_id
 fetch first 3 rows only
) inner;

M. Kvet and M. Kvet • Top data analysis performance –case study

000274

function call. For the particular sort attribute, no specific index
was present. Tab. 2 shows the results taking costs, processing
time, and total processed bytes.

TABLE II. CASE 1 RESULTS

One group

 Order by

Single attribute Function call

costs time costs time

bytes bytes

Q11
21 00:00:05 59 00:00:13

700 B 700 B

Q12
21 00:00:06 60 00:00:15

830 B 830 B

Q13
59 00:00:12 102 00:00:23

759 KB 759 KB

Q11 computed the analytical function, which was then
filtered. Thus, inner and outer query is necessary. Even though
it looks like the most complicated solution from the
development point of view, while two queries must be paced,
such a solution provides the best results. This is done by
encapsulating Order by clause directly in the analytics. Thus,
the data set is not physically sorted for consecutive processing.
Only the key sort values are treated instead of the whole data
source, like specified in the Q12. Although there is no
significant difference between Q11 and Q12, a slight
difference can be perceived. It is related to the indexing and
memory loading. Note that the loading is done on the block
granularity instead of the row itself, so the bulk loading is
present, reducing the difference in terms of source data sorting
and one attribute only. Then, the sorting is operated in the
instance memory, which is really fast. The time and cost
difference point to that.

CASE 2 extends the previous concepts by splitting the
processing into several partitions and restarting the sequence
of the analytical function. Another solution is done by the later
join. In the inner query, the data amount is filtered using the
Fetch first clause. Partitioning is emulated using the Where
condition referencing the outer query. This, however, brings a
significant performance degradation. Lateral join connects the
data dynamically on the fly. It means that the nested query is
evaluated multiple times – once for each partition. Thus,
instead of taking the whole data set and splitting it into
partitions, Lateral join takes only the data part of one partition
for processing. It consequently scans the data set multiple
times to identify relevant data valid for the particular partition.

Query using analytical function requires 60 costs, while
function call takes 63, which refers to a 5% increase. It refers
to the function parsing, referencing, evaluating, and context
switch between SQL and PL/SQL. Even using UDF pragma
does not bring additional performance increase [5]. UDF
pragma navigates the system to optimize a function building
for the SQL calls instead of a general procedural language
environment (PL/SQL).

Comparing analytical functions and Lateral join, it can be
clearly concluded that processing partitions separately really
does significant performance degradation and rise of the
system resources. Costs are significantly increased from the
value of 60 for analytical functions to 1239 for the Lateral join.
Similar differences were identified for the function reference
in the Order by clause. The results for the top data
management across partitions are in Tab. 3 and Tab. 4.

TABLE III. CASE 2 RESULTS FOR 1 ATTRIBUTE FOR PARTITIONING

Partitioning – based on a single attribute

 Order by

Single attribute Function call

costs time costs time

bytes bytes

Q21
60 00:00:13 63 00:00:14

700 B 700 B

Q22
1239 00:00:22 1273 00:00:22

830 B 830 B

Emphasizing the number of attributes used for specifying

the partition set, based on the reached results, it can be clearly
declared that the partition definition does not impact the
performance. There is only a slight difference in the costs, as
well as processing time - individual partitions can be
processed in parallel, preceded by the splitting operations
identifying partitions.

TABLE IV. CASE 2 RESULTS FOR TWO ATTRIBUTES FOR

PARTITIONING

Partitioning – based on two attributes

 Order by

Single attribute Function call

costs time costs time

bytes bytes

Q21
62 00:00:13 64 00:00:14

700 B 700 B

Q22
1245 00:00:23 1290 00:00:24

830 B 830 B

The execution plan for the Lateral join of the partitioned
system based on one attribute is depicted in Fig. 5.

Fig. 5. Execution plan

For the partition management, there was no specific index
definition, therefore the Nested loop operation was selected
for the table joining. Index can improve the performance,
while the sequential data scanning can be reduced, by shifting
the operation from Nested loop to Merge Join. Fig. 6 shows
the results for the partitioning by comparing impact of the
index definition. For the declarational purposes, costs are
emphasized, expressed in percentage.

By analyzing various size of the data sets, the scalability
aspect was evaluated. Two additional data sets were used -
medium size referred to 500 000 rows in the Flight data table.
The large data reference consisted of 5 million rows. The size
of the data set does not strictly impact the performance ranges
and corresponds with the data number to be processed and
evaluated in a linear way. The only difference relates to the
Lateral join, which degrades the performance exponentially.
The reason is based on the dynamic query evaluation, while
the inner query is evaluated for each row of the outer query
separately by using the binding condition. The correlation
between the costs and size of the data set is stated in Fig. 7.
Partitions are defined based on one attribute.

SAMI 2024 • IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics • January 25-27, 2024 • Stará Lesná, Slovakia

000275

Fig. 6. Execution plan

Fig. 7. Scalability

VII. CONCLUSIONS

Performance of the data processing, accessing and
retrieval is a significant part of the analytics. It is, however,
not only important to get the data, it is critically important to
get them at the right time and in the right form. This paper is
devoted to selecting top data by analyting performance of
various solutions, pointing to the whole set or partition the
data based on the defined criteria. Despite the fact that today
many developers lean towards the Lateral join, as evident,
such a soluition does not provide sufficient power for selecting
top data., while the groups are dynamically composed and
inner query forming the data set for the Lateral join is
evaluated dynamically, for each row of the outer query.
Analytical functions are much better, Although they process a
larger set, in which all relevant data are processed at the
beginning, overal performance benefits. This is because the
join operations can be better optimized, using the benefits of
the indexing, memory pre-loading, etc.

Besides the top data analysis, this paper focuses on the
partition definition, as well as the scalability option, whereas
the data number to be analyzed is still hugely rising.

In future development, our focus will be on the dynamic
index definition, dynamically partitioning data for the
analytical functions. We will propose global and local indexes
across partitions in the distributed environment. Among that,
we are developing own interlayer to let the system postpone
joining operation by reducing the data amount to be
considered for the analytical function. It is assumed, that the
processing can be done in parallel. So, during the analytic
function calculation, a dynamic partition index will be created,
allowing to join data in partition buckets.

ACKNOWLEDGMENT

It was supported by the Erasmus+ project: Project number:

2022-1-SK01-KA220-HED-000089149, Project title:

Including EVERyone in GREEN Data Analysis

(EVERGREEN) funded by the European Union. Views and

opinions expressed are however those of the author(s) only

and do not necessarily reflect those of the European Union or

the Slovak Academic Association for International

Cooperation (SAAIC). Neither the European Union nor

SAAIC can be held responsible for them.

REFERENCES

[1] Abhinivesh, A., Mahajan, N.: The Cloud DBA-Oracle, Apress, 2017

[2] Anders, L.: Cloud computing basics, Apress, 2021

[3] Cunningham, T.: Sharing and Generating Privacy-Preserving Spatio-
Temporal Data Using Real-World Knowledge, 23rd IEEE International
Conference on Mobile Data Management, Cyprus, 2022.

[4] Greenwald, R., Stackowiak R., and Stern, J.: Oracle Essentials: Oracle
Database 12c, O'Reilly Media, 2013.

[5] Hansen, K.: Practical Oracle SQL: Mastering the Full Power of Oracle
Database, Apress, 2020

[6] Idreos, S., Manegold S., and Graefe, G.: Adaptive indexing in modern
database. In: ACM International Conference Proceeding Series, 2012

[7] Kuhn, D. and Kyte, T.: Expert Oracle Database Architecture:
Techniques and Solutions for High Performance and Productivity.
Apress, 2021.

[8] Kuhn, D. and Kyte, T.: Oracle Database Transactions and Locking
Revealed: Building High Performance Through Concurrency, Apress,
2020.

[9] Kvet, M.: Developing Robust Date and Time Oriented Applications in
Oracle Cloud: A comprehensive guide to efficient date and time
management in Oracle Cloud, Packt Publishing, 2023, ISBN: 978-
1804611869

[10] Kvet, M., Papán, J.: The Complexity of the Data Retrieval Process
Using the Proposed Index Extension, IEEE Access, vol. 10, 2022.

[11] Lewis, J.: Cost-Based Oracle Fundamentals, Apress, 2005.

[12] Liu, Z., Zheng Z., Hou, Y. and Ji, B.: Towards Optimal Tradeoff
Between Data Freshness and Update Cost in Information-update
Systems, 2022 International Conference on Computer
Communications and Networks (ICCCN), USA, 2022.

[13] Roske, E., McMullen, T., et. al: Look Smarter Than You Are with
Oracle Analytics Cloud Standard Edition, Lulu.com, 2017

[14] Shanbhag, S.: Oracle Cloud Infrastructure 2023 Enterprise Analytics
Professional, 2022

[15] Steingartner W., Eged, J., Radakovic, D., Novitzka V.: Some
innovations of teaching the course on Data structures and algorithms,
In 15th International Scientific Conference on Informatics, 2019.

[16] Su S.Y.W., Hyun S.J. and Chen, H.M.: Temporal association algebra:
a mathematical foundation for processing object-oriented temporal
databases, IEEE Transactions on Knowledge and Data Engineering,
vol. 4, issue 3, 1998.

[17] Yao, X., Li, J., Tao, Y. and Ji, S.: Relational Database Query
Optimization Strategy Based on Industrial Internet Situation
Awareness System, 7th International Conference on Computer and
Communication Systems (ICCCS), China, 2022.

[18] Erasmus+ project EverGreen dealing with the complex data analytics:
https://evergreen.uniza.sk/

M. Kvet and M. Kvet • Top data analysis performance –case study

000276

