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Welcome from the Chairs

Computational Intelligence and Intelligent Technologies are very important tools in building intelligent 
systems with various degree of autonomous behavior. These groups of tools support such features as ability 
to learn and adaptability of the intelligent systems in various types of environments and situations. The 
current and future Information Society is expecting to be implemented with the framework of the Ambient 
Intelligence (AmI) approach into technologies and everyday life. These accomplishments provide the wide 
range of application potentials for Machine Intelligence tools to support the AmI concept implementation. 
The number of studies indicates that this approach is inevitable and will play essential and central role in the 
development of Information Society in close future.

mankind to improve and keep the ideas of humanity and democracy.

The role of Machine Intelligence Quotient will play an important role in the future to be able to evaluate the 
degree of the autonomous behavior of the designed system. It is belief that it will be domain oriented problem 
and should also be important to use this information for decisions made by humans e.g. in evaluation of 
many information system in commercial tender to pick up the system with the highest MIQ. The usefulness 

commercial aspects of the CI application in various systems. The commercial need to have “intelligent” 
solution and products should increase the interest for MI tools.

pure computer science. We do believe that this multidisciplinarity will be very useful to emerge more AI 
applications in Information Society and will help making products and solutions more “intelligent”.

This proceedings is a small contribution of knowledge dissemination and presentation of important problems 
and advances in Computational intelligence theory and applications. Hungary and Slovakia as members of 

Levente Kovács and Liberios Vokorokos 
General Chairs
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Abstract—Obtaining top data based on defined criteria 

requires sorting the data, which can be applied to all data in one 

group or to individual data partitions specified in analytical 

functions. The limitation of the database system performance is 

associated with the cardinality of the data set processed in the 

individual evaluation steps, especially regarding data 

warehouses and large sets that need to be joined. However, most 

of the data are refused while maintaining only top data. Many 

solutions are available, but the significant aspect is related to the 

performance from the system resources and time consumption 

point of view. This paper aims to analyze individual solutions 

and techniques and provide a methodology for processing top 

data not only in the data warehouse but also in an online 

transaction processing environment limiting the index number 

range. 

Keywords—Data analytics, Oracle Database, Performance, 

Transaction database, Indexing, Warehouses 

I. INTRODUCTION  

The data amount to be handled is still rising, shifting the 
processing from the conventional sphere dealing with only 
current valid data to the temporal environment, allowing 
monitoring of the data evolution in the whole time spectrum 
[1]. Several metrics categorize the data based on the origin, 
format, applicability, reliability, as well as precision frame and 
time reference [1] [4] [5] [15]. Temporal databases are 
continuously developed and improved, starting from the 
object level architecture enhancing the original object 
identifier by the validity time frames through the attribute-
oriented granularity encapsulating each data column with the 
time reference, up to synchronization groups, which 
emphasize data value as a core granularity [3]. Data value can 
reflect either the attribute itself or a set of attributes, which are 
temporally treated as one segment. Thanks to that, disc storage 
demands and the process of obtaining object state at the 
defined timestamp is done easier and faster. Temporal 
architectures form the interlayer between conventional 
relational data management and data warehouses, offering the 
layer for data analytics. Currently, complex data sets to be 
analyzed can originate from various sources and can be stored 
in any database system and architecture [2] [11] [12].  

Data to be analyzed can be stored in the online transaction 
processing system, characterized by the short transactions 
getting new data or modifying existing. In the temporal 
environment, the update operation is rather logical, while it 
always forces the system to create a new state and persist the 
whole evolution. However, there can also be requirements to 
correct already stored and loaded data by introducing multiple 
temporal spheres – validity, transaction reference, up to IPLT 
models delimited by multiple timestamps for each data node 
– input stream (adding a record to the input queue for 
processing), processing timestamp, load timestamp, and 
transaction completion time record. All these temporal 

references are essential in real-time processing systems, where 
any delay can be critical [9].  

In addition, the data to be analyzed, can be stored in 
extensive data structures, mainly in data warehouses, mostly 
determined by the star schema, marts, or their subvariants and 
extensions [12] [13] [16]. It is usually necessary to obtain the 
most critical data, the most significant changes, the fastest 
time, and simply top data based on defined criteria. Thus, the 
data need to be sorted and then evaluated. The process is 
relatively straightforward if the index for those criteria is 
present. Simply, leaf nodes are treated, and top data are 
obtained and processed. However, if there is no suitable index 
and the data set is critically huge, the performance can 
degrade. Furthermore, if the original data set must be joined 
to other tables, cardinality can significantly rise. On the other 
hand, it should be kept in mind that we still only need to obtain 
the top data, and thus, most of the originally sorted data do not 
need to be longer processed. 

The proposed paper aims to analyze the performance of 
the queries getting top data regardless of the data storage, 
architecture, and infrastructure, operated by the SQL 
language. It uses three data sets with various cardinality to 
declare the robustness operated by the scalability option. We 
do not intend to combine and evaluate multiple database 
systems. Instead, the focus is on the Oracle Database, which 
forms the most relevant database structure for complex data 
analytics in the cloud environment, even enhanced by 
machine learning techniques to get the prognoses, identify 
patterns, etc. Furthermore, the Oracle Database is the most 
powerful and scalable system in terms of accessibility through 
indexes, data loading and dynamic parameters for the memory 
structure size. Finally, this paper is supported by the 
EverGreen project [18] dealing with environmental green data 
analytics, in which Oracle Corporation acts as an associated 
partner.  

The structure of the paper is as follows. Section 2 deals 
with the problem definition, escalating the execution plan of 
the Select statement. Section 3 references indexing strategies 
and methods for table joining. Section 4 enhances data 
analytics, top data meaning, and reference, followed by the 
individual analytic-oriented clauses and window frames. The 
evaluation techniques and strategy are discussed in section 5. 
Performance study is presented in section 6, forming the 
results and methodology for getting top data in an 
performance-efficient way.  

II. EXECUTION PLAN 

SQL is a non-procedural language in which user just 

specifies what data should be provided and output format, but 

the internal process of data access must be selected by the 

database optimizer and transaction manager. Query 

optimization and selecting an access path is one of the most 

critical operations, and it strongly influences the performance 
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of the query execution. When dealing with the defined 

statement, the following steps must be done (Fig. 1) [6] [7] 

[8]:  

• Parse. Before parsing itself, the defined SQL 

statement is transferred from the user process on the 

client site to the Oracle interface. The parsing 

process then checks the validity of the statement by 

verifying the table structures, column definitions, 

privileges, etc. Parse locks are applied for all used 

structures to ensure that the definitions are not 

changed during the operation. The most suitable 

execution plan is identified based on the table 

statistics, optimization, and heuristics. The selected 

execution plan is stored in the shared SQL area 

using query hash. Thus, later on, if the analogous 

statement is to be executed, the Parse stage can be 

omitted and the already pre-defined plan can be 

directly applied.  

• Query processing ensures read consistency by using 

temporary segments. It is also applied for nested 

queries.  

• Result description phase is used, if the query is 

interactively entered by the user and query result 

types and formats cannot be directly determined.  

• Defining output by specifying the size, variable data 

types in PL/SQL to make the system perform 

relevant implicit data type conversions, if necessary.  

• Binding variables by replacing placeholders with 

real values. Using binding queries allows using the 

same execution plan for multiple queries differing 

just with the condition values.  

• Executing statement by ensuring consistency and 

integrity. The execution and data access.  

The selection of the access path is associated with the 

database statistics describing the insight of the table content, 

so it is crucial to make them actual. The process of the 

execution starts with taking the data sources (tables specified 

in the From clause), applying the conditions in the Where 

clause, and getting the output structure – projecting the data 

in the Select clause. Besides, expressions and functions are 

considered across the whole statement definition. Starving 

away from aggregation functions and groups definition, 

which is done after considering the data source, it is important 

to mention that the Where clause specifying conditions is 

treated in the first phase. The problem is that the condition 

taking top data must be considered after sorting the data. 

Thus, the whole data set must be treated, either defined by the 

fetch process limiting the output (evaluated after Order by 

clause) or by using analytical functions, which encapsulate 

Order by definition directly in its specification. One way or 

another, all data are processed, joined, and evaluated, and 

only then, the top data are selected. The following section 

considers the impact of the table index and join operation 

methods used by the Oracle Database.  

 

Fig. 1. SQL statement processing phases [7] 

III. TABLE INDEX AND JOIN METHODS 

An index is an optional structure, which is very effective 
for data location using the index key. Generally, B+tree index, 
Bitmap index, and Hash index types are used. Oracle Database 
no longer support Hash indexes, although its definition can be 
partially emulated using function indexes.  

Typically, B+tree indexes are used in transaction 
processing. They are formed by the balanced index. The 
traversing is based on the index key. The leaf node consists of 
the ROWID pointers to the particular data row residing in the 
block of the data file in the physical storage, operated by the 
database layer. Furthermore, the index leaf layer can provide 
a sorted list of the data based on the index key, which can be 
formed by the data table attributes, or function results can be 
used as a key, as well. Index key can be composite, formed by 
multiple number of attributes or function calls. Primary keys 
and unique constraints are automatically enhanced by the 
indexes, but users can also create their own ones to increase 
the performance. An example of the B+tree is shown in Fig. 2. 
It is suitable for high cardinality, high degree of distinct 
columns [7] [17].  

 

Fig. 2. B+tree 

For the data warehouses, marts, and any other analytic-
oriented architecture, among B+tree indexes, bitmap indexes 
are used, characteristic for the low cardinality columns by 
pointing to the OR and AND operations. Bitmap operations 
are really fast, so the evaluation and data access can 
significantly benefit. On the other hand, a bitmap is strongly 
limited by its structure and any change possibilities in terms 
of adding new value. Any change in the structure requires 
rebuilding the whole index. Therefore, it is mostly applicable 
for static historical data located which are not changed.  

Accessing the data using the index can bring a markable 
improvement since the sequential data block scanning 
necessity is replaced by direct access using ROWID pointers 
obtained by the index traverse. Thus, the complexity of the 
processing is shifted from O(n) to O(log(n)).  

A. Join methods 

Oracle Database provides three join methods 
implementing a logical connection between two sets of data. 
The scenario and method selection depends on the available 
indexes, the number of estimated rows in each data set, but the 
most critical part relates to the table statistics and their 
accuracy [10].  

Nested loop is the simplest operation. For each record 
from the outer input (small table), matching rows are found 
from the inner set. The joining is based on the primary 
(unique) key and foreign key. A nested loop is selected in case 
the foreign key is not indexed. The complexity of the query is 
O(N * log(M)). M and N express the cardinality of the data 
sets.  
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Merge join method is the most efficient way using the fact 
that both sets of data are indexed based on the joining keys. 
The complexity is reduced to O(M+N). 

Hash match method is an inter solution if the data set to be 
joined is large, but not enhanced by the index. In that case, a 
temporary hash index is built to split the data into the buckets, 
followed by the sequential scanning and mapping, but only 
across one bucket, which can be done in parallel, but also data 
amount to be treated is strictly limited. The complexity is O(N 
* hc + M * hm + C), where N is a smaller data set, hc expresses 
the complexity of hash index creation, M refers to the larger 
data set cardinality, hm delimits the complexity of the hash 
match function. And finally, C addition refers to the 
complexity of the dynamic calculation and hash function 
creation. 

The following section deals with the data analysis pointing 
to the top data definition and representation.  

IV. DATA ANALYSIS – TOP DATA 

Data analysis is the next developmental stage of data 
aggregation, which is characterized by reducing the output 
data rows – one for each group defined in the Group by clause. 
Analytical functions behave differently. Instead of producing 
one row for each group, the original data set is retained, and 
each row is extended by the partial analytical function result. 
By default, for each row, all the preceding rows are 
considered, but the behavior can be set using the 
windowing_clause of the analytic function by defining the 
frame of rows or values that are relevant for processing 
particular row values [13] [14].  

To get the correct results, the data to be handled must be 
sorted using order_by_clause directly embedded in the 
analytical function. Thus, instead of considering the whole 
data set, the sort operation is done directly inside the analytics. 
Besides, the analytical function can be applied for each 
partition (specified in the query_partition_clause) separately 
by building independent solutions across multiple groups. The 
syntax of the analytical functions is shown in Fig. 3.  

 

 

Fig. 3. Analytical function syntax clauses 

To get the top data, analytical functions can provide a 
suitable and easy implementable solution. However, what 
does the top data actually mean? There are three rules which 
can be applied:  

• Top-rows rule getting exactly three rows.  

• Olympic rule providing gold, silver and bronze the 
Olympic way.  

• Top-values rule getting all rows that have top-n 
values.  

The limitation of the top-rows rule is based on the fact that 
the fourth row is ignored, even though it has the same value as 
the third one. Moreover, it can be said that the selection of the 
rows with the same values is random, resulting in the fact that 
the same query can later provide different results, even based 

on the same input data. The reason is just based on the Order 
by clause based on non-unique values.  

Tab. 1 shows the function reference for the defined top-
rules.  

TABLE I.  REFERENCE ANALYTICAL FUNCTIONS 

Rule Reference analytical function 

Top-rows Row_number 

Olympic rule Rank 

Top-values Dense_rank 

 

The example for getting top-3 rows is depicted in the next 
code snippet. Its goal is to get the longest stay of the plane in 
the flight information region (FIR): 

As evident from the snippet, analytical functions cannot be 
directly placed in the Where clause (referencing FIR regions 
in Germany), since the order of conditions to be evaluated is 
not strictly specified and depends on the database optimization 
process. Besides, not all data are present in the Where clause 
compared to the final result set. Therefore, any conditions on 
the analytics must be encapsulated, and a nested query must 
be created. Specifically, the inner statement calculates the 
analytical function result for each row. Then, the outer query 
filters the data based on analytics. The statement execution 
process is shown in Fig. 4.  

  

Fig. 4. Statement processing steps – left part - one table, right part – JOIN 

operation 

The first performance limitation relates to the requirement 
to process all data based on the defined FIR list, whereas the 

select *  
 from 
   (select flight_id,  
                departure_airport, arrival_airport,   
                air_company_id,  
                row_number() over  
                      (order by stay_duration desc) as RN 
       from flight_data 
        where FIR in ('EDGG', 'EDMM', 'EDUU',  
                               'EDVV', 'EDWW', 'EDYY') 
  ) 
     where RN<=3; 
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data need to be sorted and consecutively treated by the 
analytical functions. However, if multiple tables need to be 
joined and mapped, the problem is even deeper, whereas the 
JOIN operation belongs to one of the most demanding 
database operations. It should be noted that extensive data sets 
are commonly processed in the analytical environment. The 
research question is, how to limit the necessity to join all 
source data together? 

V. STRATEGIES FOR GETTING TOP DATA  

For the performance analysis and evaluation, multiple 
cases were used to declare the processing time demands and 
costs. The data set monitoring the flights was used, delimited 
by various cardinalities to declare the scalability of the system: 

• CASE 1: taking 10 longest flights. For each flight, 

individual FIR (Flight information region) regions 

are referenced, enhanced by their parameters at a 

given time, while they evolve over time. Three data 

query representations are evaluated:  

o  Q11 using analytical function 

row_number, defined in the inner 

statement, followed by the filtering based 

on it in the outer statement.  

o  Q12 based on pre-sorting and limiting the 

output result set number using Fetch first 

clause.  

o Q13 postponing JOIN operation to the end 

of the query processing.  

• CASE 2: taking 10 longest flight for each FIR 

assignment processed independently. This is done 

by using Partition clause of the analytical function. 

Following query representations are evaluated:  

o  Q21 using analytical function 

row_number, defined in the inner 

statement, followed by the filtering based 

on it in outer statement.   

o  Q22 using JOIN LATERAL allowing to 

dynamically join data on the run.  

o  Fetch first clause cannot be used, whereas 

it does not work for multiple partitions.  
CASE 2 has two variants to be evaluated – partition 

defined by one attribute (CASE 2a) and partition enhanced by 
the composite key formed by two attributes (CASE 2b).  

For both cases, the sotring rule was based on the table 
attribute, or the function call was used to focus on the attribute 
encapsulation in the function call.  

VI. PERFORMANCE 

For the computational study, a server with the following 

parameters was used: 

• Operating system: Windows Server 2020 

• Processor: AMD Ryzen 5 PRO 5650U with Radeon 

Graphics, 2.30 GHz  

• Memory: 2x 32 GB DDR-4, 3200MHz, CL20  

• Disc storage: 2 TB, NVMe, read/write 3500 MB/s  

 
As stated, Oracle Database was used delimited by the 

version Oracle Database 21c Enterprise Edition Release 
21.0.0.0.0 – Production Version 21.3.0.0.0. Three data sets 
were used, differentiated by the cardinality. Two tables were 
referenced – the FIR table took 100 rows describing the 
temporal parameters and assignments of the FIR. Each row 
took 1024 KB. The smallest fragment of the flight data 
consisted of 10 000 rows. The example of the flight data is 
depicted in Fig. 5. Each flight is identified by the ECTRL_ID 
and set of obtained data monitoring the flight 
(Sequence_number), current flight parameters, and 
assignment to the FIR (AUA_ID). That assignment is 
temporally bordered using Entry_Time and Exit_Time.  

As described in the previous section, two cases were used. 
In this section, results are provided and discussed.  

CASE 1 is associated with one group only. Order By 
clause was done on the single attribute, then enhanced by the 

Q11: 
select * 
 from 
 (select fir_parameters(temporal), air_company_data,   
              flight_data, 
             row_number() over(order by ectrl_id) as rn 
    from flight_data join fir using(fir_ref) 
                               join air_company using(comp_ref) 
 ) 
    where rn<=10; 

Q12: 
select fir_parameters(temporal), air_company_data, flight_data      
  from flight_data join fir using(fir_ref) 
                                join air_company using(comp_ref) 
    order by ectrl_id  
      fetch first 10 rows only; 

Q13: 
select fir_parameters(temporal),  
           air_company_data, flight_data, rn 
from 
 (select * 
   from 
     (select flight_data, 
                row_number() over(order by ectrl_id) as rn 
        from flight_data 
  ) 
    where rn<=10) inner 
        join fir using(fir_ref) 
        join air_company using(comp_ref); 

Q21: 
select * 
 from 
 (select fir_parameter), air_company_data,   
              flight_data, 
             row_number() over(partition by fir_list_seq  
                                                 order by ectrl_id) as rn 
    from flight_data join fir using(fir_ref) 
                                  join air_company using(comp_ref) 
 ) 
    where rn<=10; 

Q22: 
select fir.*, inner.* 
 from fir + air_company 
  cross join lateral 
   (select * from flight_data fd 
     where fd.fir_list_seq=fir.fir_ref 
      order by ectrl_id 
       fetch first 3 rows only 
   ) inner;   
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function call. For the particular sort attribute, no specific index 
was present. Tab. 2 shows the results taking costs, processing 
time, and total processed bytes.  

TABLE II.  CASE 1 RESULTS 

One group 

 Order by 

Single attribute Function call 

costs time costs time 

bytes bytes 

Q11 
21 00:00:05 59 00:00:13 

700 B 700 B 

Q12 
21 00:00:06 60 00:00:15 

830 B 830 B 

Q13 
59 00:00:12 102 00:00:23 

759 KB 759 KB 

 

Q11 computed the analytical function, which was then 
filtered. Thus, inner and outer query is necessary. Even though 
it looks like the most complicated solution from the 
development point of view, while two queries must be paced, 
such a solution provides the best results. This is done by 
encapsulating Order by clause directly in the analytics. Thus, 
the data set is not physically sorted for consecutive processing. 
Only the key sort values are treated instead of the whole data 
source, like specified in the Q12. Although there is no 
significant difference between Q11 and Q12, a slight 
difference can be perceived. It is related to the indexing and 
memory loading. Note that the loading is done on the block 
granularity instead of the row itself, so the bulk loading is 
present, reducing the difference in terms of source data sorting 
and one attribute only. Then, the sorting is operated in the 
instance memory, which is really fast. The time and cost 
difference point to that.  

CASE 2 extends the previous concepts by splitting the 
processing into several partitions and restarting the sequence 
of the analytical function. Another solution is done by the later 
join. In the inner query, the data amount is filtered using the 
Fetch first clause. Partitioning is emulated using the Where 
condition referencing the outer query. This, however, brings a 
significant performance degradation. Lateral join connects the 
data dynamically on the fly. It means that the nested query is 
evaluated multiple times – once for each partition. Thus, 
instead of taking the whole data set and splitting it into 
partitions, Lateral join takes only the data part of one partition 
for processing. It consequently scans the data set multiple 
times to identify relevant data valid for the particular partition.  

Query using analytical function requires 60 costs, while 
function call takes 63, which refers to a 5% increase. It refers 
to the function parsing, referencing, evaluating, and context 
switch between SQL and PL/SQL. Even using UDF pragma 
does not bring additional performance increase [5]. UDF 
pragma navigates the system to optimize a function building 
for the SQL calls instead of a general procedural language 
environment (PL/SQL).  

Comparing analytical functions and Lateral join, it can be 
clearly concluded that processing partitions separately really 
does significant performance degradation and rise of the 
system resources. Costs are significantly increased from the 
value of 60 for analytical functions to 1239 for the Lateral join. 
Similar differences were identified for the function reference 
in the Order by clause. The results for the top data 
management across partitions are in Tab. 3 and Tab. 4.  

TABLE III.  CASE 2 RESULTS FOR 1 ATTRIBUTE FOR PARTITIONING 

Partitioning – based on a single attribute 

 Order by 

Single attribute Function call 

costs time costs time 

bytes bytes 

Q21 
60 00:00:13 63 00:00:14 

700 B 700 B 

Q22 
1239 00:00:22 1273 00:00:22 

830 B 830 B 

 
Emphasizing the number of attributes used for specifying 

the partition set, based on the reached results, it can be clearly 
declared that the partition definition does not impact the 
performance. There is only a slight difference in the costs, as 
well as processing time - individual partitions can be 
processed in parallel, preceded by the splitting operations 
identifying partitions.  

TABLE IV.  CASE 2 RESULTS FOR TWO ATTRIBUTES FOR 

PARTITIONING 

Partitioning – based on two attributes 

 Order by 

Single attribute Function call 

costs time costs time 

bytes bytes 

Q21 
62 00:00:13 64 00:00:14 

700 B 700 B 

Q22 
1245 00:00:23 1290 00:00:24 

830 B 830 B 

 

The execution plan for the Lateral join of the partitioned 
system based on one attribute is depicted in Fig. 5.  

 

Fig. 5. Execution plan 

For the partition management, there was no specific index 
definition, therefore the Nested loop operation was selected 
for the table joining. Index can improve the performance, 
while the sequential data scanning can be reduced, by shifting 
the operation from Nested loop to Merge Join. Fig. 6 shows 
the results for the partitioning by comparing impact of the 
index definition. For the declarational purposes, costs are 
emphasized, expressed in percentage.  

By analyzing various size of the data sets, the scalability 
aspect was evaluated. Two additional data sets were used - 
medium size referred to 500 000 rows in the Flight data table. 
The large data reference consisted of 5 million rows. The size 
of the data set does not strictly impact the performance ranges 
and corresponds with the data number to be processed and 
evaluated in a linear way. The only difference relates to the 
Lateral join, which degrades the performance exponentially. 
The reason is based on the dynamic query evaluation, while 
the inner query is evaluated for each row of the outer query 
separately by using the binding condition. The correlation 
between the costs and size of the data set is stated in Fig. 7. 
Partitions are defined based on one attribute.  
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Fig. 6. Execution plan 

 

Fig. 7. Scalability 

VII. CONCLUSIONS 

Performance of the data processing, accessing and 
retrieval is a significant part of the analytics. It is, however, 
not only important to get the data, it is critically important to 
get them at the right time and in the right form. This paper is 
devoted to selecting top data by analyting performance of 
various solutions, pointing to the whole set or partition the 
data based on the defined criteria. Despite the fact that today 
many developers lean towards the Lateral join, as evident, 
such a soluition does not provide sufficient power for selecting 
top data., while the groups are dynamically composed and 
inner query forming the data set for the Lateral join is 
evaluated dynamically, for each row of the outer query. 
Analytical functions are much better, Although they process a 
larger set, in which all relevant data are processed at the 
beginning, overal performance benefits. This is because the 
join operations can be better optimized, using the benefits of 
the indexing, memory pre-loading, etc.  

Besides the top data analysis, this paper focuses on the 
partition definition, as well as the scalability option, whereas 
the data number to be analyzed is still hugely rising.  

In future development, our focus will be on the dynamic 
index definition, dynamically partitioning data for the 
analytical functions. We will propose global and local indexes 
across partitions in the distributed environment. Among that, 
we are developing own interlayer to let the system postpone 
joining operation by reducing the data amount to be 
considered for the analytical function. It is assumed, that the 
processing can be done in parallel. So, during the analytic 
function calculation, a dynamic partition index will be created, 
allowing to join data in partition buckets.  
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