
 
 
 

















---------------------------------------------------------------------------- VII ----------------------------------------------------------------------------



---------------------------------------------------------------------------- VIII ----------------------------------------------------------------------------



---------------------------------------------------------------------------- IX ----------------------------------------------------------------------------



---------------------------------------------------------------------------- X ----------------------------------------------------------------------------



---------------------------------------------------------------------------- XI ----------------------------------------------------------------------------



---------------------------------------------------------------------------- XII ----------------------------------------------------------------------------



---------------------------------------------------------------------------- XIII ----------------------------------------------------------------------------



---------------------------------------------------------------------------- XIV ----------------------------------------------------------------------------



---------------------------------------------------------------------------- XV ----------------------------------------------------------------------------



---------------------------------------------------------------------------- XVI ----------------------------------------------------------------------------





Referring Null Values in Partitioned Tables 

Martina Hrínová Durneková 
University of Žilina 

Žilina, Slovakia 
Martina.Durnekova@fri.uniza.sk 

Michal Kvet 
University of Žilina 

Žilina, Slovakia 
Michal.Kvet@fri.uniza.sk 

Abstract—Nowadays, working with data is very important in 
the decision-making process. A large amount of data is generated 
daily and needs to be stored efficiently. The database system 
makes it possible to divide tables into smaller, more manageable 
chunks, so-called partitions. Partitions are created based on the 
partition key column. If we insert records that do not contain any 
anomalies, there is no problem with inserting records into the 
partitioned table. The problem can arise if we are trying to insert 
records that contain null values of the partition key column. 
Therefore, the aim of this paper is to show how records with null 
values of the partition key columns behave when inserted into a 
partitioned table and to create methodology for managing 
partitions with records with null values. We focus on three types 
of partitioning: Range, List and Hash partitioning. As part of the 
experiments, we will show how it is possible to modify the 
definition of the created tables and partitions so, that the records 
with null value of the partition key column can also be inserted 
into the table. 

I. INTRODUCTION 

Nowadays, a huge amount of data is generated every day. 
The data needs to be efficiently stored, processed and the 
results interpreted for further decisions. 

As the amount of data stored in the database tables 
increases, the efficiency of the executed operations decreases, 
which can lead to an increase in the total cost of the executing 
queries. During creating queries, we try to reduce the total cost 
of queries execution as much as possible. There are several 
ways we can achieve this. Either by creating indexes, 
replications, or dividing the table into smaller parts, so-called 
partitions. 

However, the obtained data might not acquire the required 
structure. In many cases, we come across that the data was 
incorrect, even some records were incomplete, or some data is 
empty, has no value. We say that such data acquire a null 
value [6]. 

Null values are discussed topic in general. In database 
tables, they can occur only in those columns whose integrity 
constraint is not set to NOT NULL or PRIMARY KEY. How to 
work with such columns to be sure that we ensure the correct 
interpretation of the records? In database systems, it is not 
possible to compare null values through the = assign, but 
through the condition IS NULL or IS NOT NULL [2]. In case 
we want to treat null values in some way and work with some 
value defined by instead of null, there are functions that can 
transform null values to a default value or value defined by us. 
These function include: NVL(), Coalesce(), Decode() [2]. 

These methods can be used in the case when the records are 
already stored in the database tables. But how do we insert 
records that contain null values into the table? Inserting records 
into ordinary table might not be a problem if the integrity 
constraints are respected. But in the case of partitioned tables, 
whose partitions are created based on a column that can be 
defined as null, it can already be a problem. 

Therefor, the main aim of this paper is to create a 
methodology for managing partitions with records with null 
values and to show how null values behave during inserting 
records into partitioned table, how it is necessary to modify the 
definitions of partitioned tables so that it is possible to insert 
records with null values of the partition key columns.  

The Oracle database environment will be used for the 
experiments in this paper. Oracle is a powerful and versatile 
database system that provides a wide range of features and 
benefits. It delivers high performance and scalability solutions, 
ensures high availability and reliability, and also offers a large 
set of data backup and recovery tools. Oracle Database 
additionally supports multiple partitioning methods including 
range, hash, and list partitioning. However, handling null 
values requires a special approach in each database system. 
MySQL and PostgreSQL database systems are not different in 
this regard. While both systems support partitioning, they each 
have several limitations. The MySQL database system does not 
allow creating indexes on columns that contain null values, 
which can potentially impact query performance [5]. 
Additionally, the use of foreign keys on partitioned tables is not 
supported, which can reduce data integrity. PostgreSQL and the 
Oracle database system has fewer restrictions on partitioned 
tables in comparison to the previously mentioned database 
system. 

This paper contains several chapters. At the beginning, the 
database tables will be described in more detail. The theoretical 
part will then continue in the next chapter, which will be 
focused on partitioning. In this chapter we will discuss in more 
detail the different types of partitioning provided by the 
database system. The experimental part will be found in 
chapter four. We will show a methodology for modifying the 
definition of database tables for various types of partitioning. 
At the end, individual experiments will be summarized. 

II. DATABASE TABLE

A database table is the basic unit of data storage in a 
database. Data in a database table is stored using rows and 
columns. Each row has to be identified by unique value [1]. 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 194 ----------------------------------------------------------------------------



Each database table has a precisely defined structure, therefore 
the data that needs to be stored must also meet these 
requirements [4], [7]. Fig. 1 shows the simplified syntax for 
creating a database table. 

 

Fig. 1. Create table syntax 

When creating a table, it is necessary to define the table 
name and columns, or it is also possible to create a table as a 
result of the Select statement. In that case, the created table will 
have the same structure as defined in the Select statement. 
Database and schema name is optional [7]. 

In the case of defining columns, it is necessary to define the 
column name and data type (Varchar, Date, Number, etc.). 
furthermore, it is possible to define rules for table columns, so-
called integrity constraints. These integrity constraints include 
for example NOT NULL. It ensures whether the column value 
has to be filled or not [7], [10]. 

The database table can also contain virtual columns. Virtual 
columns differ in that their value is derived based on a defined 
expression. The expression represents, for example, constants, 
the value of other column of the same table, user-defined 
functions, or SQL functions [7].   

The Oracle database system allows us to create different 
types of database tables, for example, an ordinary table that is 
created by default, an index-organized table, a partitioned table, 
an external table, etc [7]. In this paper, we are focusing on 
partitioned tables, which are described in more detail in the 
following section. 

III. PARTITIONING 

As the amount of data stored in database tables increases, 
data processing operations might become slower and less 
efficient. Therefore, the idea arose to divide the table into 
smaller, more manageable chunks so-called partitions [8], [12], 
thanks to which the easier maintenance of the database will be 
ensured and at the same time the performance and efficiency of 
the query execution will increase [9], [13]. 

Partitioning is a technique that allows database objects 
(tables and indexes) to be subdivided into smaller chunks called 
partitions. Each partition is defined by its name and might also 
have its own storage characteristics defined. A database object, 
which consists of several partitions, can be managed more 
easily, while these partitions can be managed separately or 
collectively [8]. Partitioning helps reduce the total cost of 
executing operations [12]. 

It is important to note, that accessing a partitioned table does 
not differ in any way from accessing a classic non-partitioned 
table. It means that a partitioned table is still only one table that 

can be accessed using DML operations in the same way as a 
non-partitioned table. 

Partitioning key divides the database object into individual 
partitions. It can include one or set of columns. Using it, it is 
possible to determine in which partition each record will be 
included [3]. 

The graphical representation of a non-partitioned table and a 
partitioned table is shown in Fig. 2. 

 

Fig. 2. Graphical representation of the non-partitioned table and partitioned 
table 

 There are many requirements for data processing. Oracle 
provides comprehensive partitioning solution, the so-called 
partitioning strategies. There are two ways to divide tables. 
Single (one-level) partitioning or composite (two level) 
partitioning [8]. Single partitioning is displayed in Fig 2. It 
means that table will be divided only into partitions. The second 
option (composite partitioning) ensures that each partition is 
divided to the subpartitions [11]. Fig. 3 shows graphical 
representation of the subpartitioned table. 

 

Fig. 3.  Graphical representation of the subpartioned table 

So, there are many ways to divide the table into partitions 
and subpartitions. It is also possible to create partitions directly 
in the definition or dynamically when inserting records into the 
table. In addition, partitioning has many extensions, increases 
flexibility, and it is also possible to increase performance by 
creating global and local indexes. 

There are three basic methods of data distribution into 
partitions provided by Oracle partitioning – Range partitioning, 
List partitioning and Hash partitioning. 

A. Range partitioning 

Range partitioning ensures the data distribution into 
partitions based on the range of values of the partitioning key 
column/columns. The syntax of this type of partitioning is as 
follows: 

CREATE TABLE [schema.]<table_name>( 
  <table_definition>  

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 195 ----------------------------------------------------------------------------



) 
PARTITION BY RANGE (<column> [, <column>, ...]) 
 [INTERVAL (<constant> | <expression>)] 
 ... 
( 
    PARTITION [<partition_name>] 

VALUES LESS THAN (<value>[, <value>]...), 
    [TABLESPACE <tablespace_name>] 
  ... 
)/ 

Range partitioning represents a continuous distribution 
without gaps [3]. Let’s imagine that we want to divide the data 
into partitions according to years. When defining a partition, 
we always define the upper boundary of the partition. The 
lower boundary is automatically set to the value of the upper 
boundary of the previous partition. The boundaries have an 
increasing character. It means that the first partition covers all 
records with a lower value than defined. It is also possible to 
define the last partition with the highest partition boundary [8]. 
This partition boundary can be defined by MAXVALUE value 
[11], [12], [13]. Each boundary represents an open interval. 

B. List partitioning 

List partitioning is a type of partitioning in which the set of 
values in the range is not defined, but the set takes on the 
discrete values of the partition key column [11]. It means that 
each partition has precisely defined set of values. In the case, 
that some inserted records do not acquire any of these values, 
and therefore do not belong to any partition, it is possible to 
define a DEFAULT partition type, that caches all other records 
[8], [13]. 

The syntax of list partitioning is as follows: 

CREATE TABLE [schema.]<table_name>( 
  <table_definition>  
) 
PARTITION BY LIST (<column>) [AUTOMATIC] 
...  
( 
   PARTITION [<partition_name>] 
     VALUES (<value>[, <value>]...), 
     [TABLESPACE <tablespace_name>] 
  ... 
)/ 

As can be seen in the syntax of list partitioning, using the 
key word AUTOMATIC is possible to create partitions 
automatically according to inserting records.  

C. Hash partitioning 

The difference between HASH partitioning and the above 
types of partitioning is that HASH partitioning has its own 
internal hash algorithm built in. This algorithm divides records 
into partitions based on a partition key column [3], [11]. The 
syntax of this type of partitioning is as follows: 

CREATE TABLE [schema.]<table_name>( 
  <table_definition>  
) 
PARTITION BY HASH (<column> [, <column>, ...]) 
 ... 
 [PARTITIONS <num>] [STORE IN <tablespace_name>  

 [, <tablespace_name>, ...]] 
( 
   PARTITION [<partition_name>] 
    [TABLESPACE <tablespace_name>] 
  ... 
)/ 

Hash partitioning is used when the range or list key is not 
obvious. This type of partitioning provides roughly equi-

balanced sizes of the partitions. Therefore, it is difficult to 
expect association between partitions and data. With hash 
partitioning, it is possible to define the number of partitions to 
be created. However, this number must be a power of 2, so this 
attribute also greatly affects the partition size balance [8], [13]. 

In the following section, experiments are described in more 
detail. Using examples, we demonstrate individual types of 
partitioning in connection with null values.  

IV. EXPERIMENTS

The aim of the performed experiments was to find out how 
records with null values are stored in database tables divided 
into partitions through range, list, and hash partitioning. For 
each type of partitioning, we created separate database tables 
in which we inserted different types of records, while these 
records also contained null values of the columns according to 
which the tables were divided into partitions. 

For these experiments, the Oracle Database environment 
was used, specifically version Oracle 19c. 

A. Range partitioning 

First, we focused on RANGE partitioning. In this section, 
we looked at two options for creating database tables divided 
into partitions. The first option was to define the partitions 
directly. It means that we defined as many partitions as we 
needed in the table definition. The second option was to create 
partitions dynamically. It means that in the table definition we 
defined only the initial partition and during inserting records, 
partitions were created as needed. 

The following code shows the table definition with name 
tab_partition_null. This table contains three columns 
(identification number, record creation date, text) and partition 
definition. The table contains four partitions that are created 
for years based on the created date column. The first partition 
covers all records that were created up to 2021, the second 
partition covers only records from 2021, the third partition 
stored only records from 2022, and the last partition stores all 
records that were created from 2023 onwards. 

CREATE TABLE tab_partition_null( 
  record_id NUMBER NOT NULL PRIMARY KEY, 
  creation_date DATE, 
  text  VARCHAR2(30)) 
PARTITION BY RANGE (creation_date)( 
 PARTITION part_2020 
   VALUES LESS THAN (TO_DATE('01.01.2021', 'DD.MM.YYYY')), 
 PARTITION part_2021 
   VALUES LESS THAN (TO_DATE('01.01.2022', 'DD.MM.YYYY')), 
 PARTITION part_2022 
   VALUES LESS THAN (TO_DATE('01.01.2023', 'DD.MM.YYYY')), 
 PARTITION part_20XX 
   VALUES LESS THAN (MAXVALUE)) 
/ 

After creating the database table with partitions, we inserted 
some records into the table. Two of these records contained a 
null value in the creation_date column. Inserted records are 
displayed in the following code. 

INSERT INTO tab_partition_null 
VALUES(1, TO_DATE('21.12.2022', 'DD.MM.YYYY'), 'Text1'); 

INSERT INTO tab_partition_null 
VALUES(2, TO_DATE ('21.12.2021', 'DD.MM.YYYY'), 'Text2'); 

INSERT INTO tab_partition_null 
  VALUES(3, NULL, 'Text3'); 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 196 ----------------------------------------------------------------------------



INSERT INTO tab_partition_null 
VALUES(4, TO_DATE ('21.10.2023', 'DD.MM.YYYY'), 'Text4'); 

INSERT INTO tab_partition_null 
  VALUES(5, NULL, 'Text5'); 

All records were successfully inserted into the table 
tab_partition_null, even the records with null value of the 
creation_date column. 

After running the following SELECT statement, which 
returns the number of records in each partition, we found that 
in the last partition (PART_20XX) are stored three records. 

SELECT 'PART_2020', COUNT(*)  
   FROM TAB_PARTITION_NULL PARTITION (PART_2020)  
 UNION ALL  
SELECT 'PART_2021', COUNT(*)  
   FROM TAB_PARTITION_NULL PARTITION (PART_2021)  
 UNION ALL  
SELECT 'PART_2022', COUNT(*)  
   FROM TAB_PARTITION_NULL PARTITION (PART_2022)  
 UNION ALL  
SELECT 'PART_20XX', COUNT(*)  
   FROM TAB_PARTITION_NULL PARTITION (PART_20XX); 

The result of previous SELECT statement is displayed in 
Table I. 

TABLE I. NUMBER OF RECORDS IN THE TAB_PARTITION_NULL 

TABLE 

PART_ COUNT(*) 

PART_2020 0 

PART_2021 1 

PART_2022 1 

PART_20XX 3 

When we run SELECT statement for the last partition 
(PART_20XX) we see those records with null values in 
creation_date column is stored in this partition, because this 
partition covers all records that do not belong to the previous 
partitions. 

The second option of creating partitions is using an interval. 
These partitions are created automatically. At the beginning, 
the first partition is determined. When inserting a record, the 
value of the record is taken and inserted into the appropriate 
partition. If this partition does not exist, it will be created 
dynamically. The following code shows definition of the 
database table together with definition of the partitions 
according to creation_date column using the interval function. 

CREATE TABLE tab_interval_partition_null( 
  record_id NUMBER NOT NULL PRIMARY KEY, 
  creation_date DATE, 
  text  VARCHAR2(30)) 
PARTITION BY RANGE (creation_date) 
  INTERVAL (NUMTOYMINTERVAL(1, 'YEAR'))( 
 PARTITION part_1 
   VALUES LESS THAN (TO_DATE('01.01.2021', 'DD.MM.YYYY'))) 
/ 

After creating the table, we inserted the same records into it 
as in the previous example. Records with the existing value of 
the creation_date column were successfully inserted into the 
table. The appropriate partitions were created. The initial 
partition is created always, but the system automatically 
created additional partitions for records with other year of 
creation_date column.  

The system failed to insert records with null value of the 
creation_date column and gave the following error (ORA-
14300). 

SQL Error: ORA-14300: partitioning key maps to a partition 
outside maximum permitted number of partitions 

The system could not assign the null value of the 
creation_date column to any partition, nor could it create a 
new partition, because null key values for interval partitioning 
are not supported by the system. 

The solution to this problem with null values for the 
partition key column could be a virtual table column that will 
either take the value of the existing creation_date column or 
transform the null value to a value we have predefined.  So, 
we extended the tab_interval_partition_null table with virtual 
column named date_def. The virtual column is automatically 
calculated based on whether or not the creation_date column 
is filled. If the creation_date column has null value, the 
predefined date 01.01.2999 will be set. It was also necessary to 
change the creation_date column to date_def column in the 
PARTITION BY RANGE section. The modified table 
definition is shown in the following example. 

CREATE TABLE tab_interval_partition_null( 
  record_id  NUMBER NOT NULL PRIMARY KEY, 
  creation_date DATE, 
  text   VARCHAR2(30), 
  date_def  DATE GENERATED ALWAYS AS  

(COALESCE(creation_date,  
   TO_DATE('01.01.2999','DD.MM.YYYY'))) VIRTUAL) 

PARTITION BY RANGE (date_def)  
   INTERVAL( NUMTOYMINTERVAL (1, 'YEAR'))( 
 PARTITION part_1 

VALUES LESS THAN (TO_DATE('01.01.2021', 'DD.MM.YYYY'))) 
/ 

After re-creating the tab_interval_partition_null database 
table and inserting given records we received information that 
all records have been successfully inserted to the table. 

The names, interval values and number of rows in partitions 
are accessed via the following statement. 

SELECT partition_name, high_value, num_rows 
 FROM   user_tab_partitions 
 WHERE table_name = 'TAB_INTERVAL_PARTITION_NULL' 
 ORDER BY partition_name; 

The result of the SELECT statement is displayed in the 
Table II. 

TABLE II. NAMES AND INTERVAL VALUES OF THE PARTITIONS 

PARTITION NAME INTERVAL VALUE REC. NUMBER 

PART_1 TO_DATE(' 2021-01-01 00:00:00', 
'SYYYY-MM-DD HH24:MI:SS) 0 

SYS_P34691 TO_DATE(' 2023-01-01 00:00:00', 
'SYYYY-MM-DD HH24:MI:SS') 1 

SYS_P34692 TO_DATE(' 2022-01-01 00:00:00', 
'SYYYY-MM-DD HH24:MI:SS') 1 

SYS_P34693 TO_DATE(' 3000-01-01 00:00:00', 
'SYYYY-MM-DD HH24:MI:SS') 2 

SYS_P34694 TO_DATE(' 2024-01-01 00:00:00', 
'SYYYY-MM-DD HH24:MI:SS') 1 

As can be seen in the Table II, initial partition defined by us 
was created and then there were four partitions created 
according to needed. Partitions which are created by system 
start with prefix SYS. We can see that in the partition 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 197 ----------------------------------------------------------------------------



SYS_P34693 are two records. That records contain null value 
in creation_date column. 

B. List partitioning 

LIST partitioning is similar as a RANGE partitioning. 
Different is that list partitioning defines list of values which 
the partitions can acquire. In this section, we will demonstrate 
an example of the tab_list_partition_null database table 
partitioned using LIST partitioning. The effort is to find out 
how to store the records that contain null values of the column 
that defines the partitions. 

The tab_list_partition_null database table is extended by 
another state_code attribute. Based on this attribute, four 
partitions will be created. The first partition contains only 
records that acquire the value SK or CZ of the state_code 
column. The second partition covers records with BE and FR 
state_code column, records with DE and AT state_code 
column are stored in the third partition and the last partition 
contains records with HU and PL value of the state_code 
column. The definition of the tab_list_partition_null is 
displayed below.  

CREATE TABLE tab_list_partition_null( 
  record_id NUMBER NOT NULL PRIMARY KEY, 
  creation_date  DATE, 
  state_code  VARCHAR(2), 
  text  VARCHAR2(30)) 
PARTITION BY LIST (state_code)( 
  PARTITION part_1 VALUES ('SK', 'CZ'), 
  PARTITION part_2 VALUES ('BE', 'FR'),  
  PARTITION part_3 VALUES ('DE', 'AT'), 
  PARTITION part_4 VALUES ('HU', 'PL')) 
/ 

After creating the table, we tried to insert the following 
records. The records also contained null values of the 
state_code column, but also values that do not fit into any 
partition. 

INSERT INTO tab_list_partition_null VALUES 
  (1, TO_DATE ('21.12.2022', 'DD.MM.YYYY'), 'SK', 'Text1'); 

INSERT INTO tab_list_partition_null VALUES 
  (2, TO_DATE ('21.12.2021', 'DD.MM.YYYY'), NULL, 'Text2'); 

INSERT INTO tab_list_partition_null VALUES 
  (3, NULL, 'HU', 'Text3'); 

INSERT INTO tab_list_partition_null VALUES 
  (4, TO_DATE ('21.10.2023', 'DD.MM.YYYY'), 'AT', 'Text4'); 

INSERT INTO tab_list_partition_null VALUES 
  (5, NULL, NULL, 'Text5'); 

INSERT INTO tab_list_partition_null VALUES 
  (6, NULL, 'GB', 'Text6'); 

Records with a filled value of the state_code column were 
successfully inserted into the table, but records with a null 
value and a different value of this column could not be 
inserted into the database table. The system threw the 
following error (ORA-14400). 

SQL Error: ORA-14400: inserted partition key does not map to 
any partition 

Therefore, we had to extend the definition of the 
tab_list_partition_null table with additional types of partitions. 
The system allows us to use the default clause. Subsequently, 
all other records that do not meet the conditions of the 
previous partitions will be inserted to the default partition. 

Records with null value of the partition key column will 
also be stored in this partition. However, if we would like to 
separate records with null values from records whose value is 
filled but does not belong to any defined partition, the system 
allows creating a partition only for records with null values 
through the null clause. 

The following example shows extending the 
tab_list_partition_null database table definition to include two 
more partitions. To the definition, we have added a partition 
that will store only records with null values in a given column, 
and another partition will store records with column values 
that do not fit into any other partition. 

CREATE TABLE tab_list_partition_null( 
  record_id  NUMBER NOT NULL PRIMARY KEY, 
  creation_date  DATE, 
  state_code  VARCHAR(2), 
  text VARCHAR2(30)) 
PARTITION BY LIST (state_code)( 
  PARTITION part_1 VALUES ('SK', 'CZ'), 
  PARTITION part_2 VALUES ('BE', 'FR'),  
  PARTITION part_3 VALUES ('DE', 'AT'), 
  PARTITION part_4 VALUES ('HU', 'PL'),  
  PARTITION part_null VALUES (NULL), 
  PARTITION part_default VALUES (DEFAULT)) 
/ 

Subsequently, we again tried to insert the above records 
into the tab_list_partition_null table. All records were 
successfully inserted. Using the following SELECT statement, 
we checked how many records are in individual partitions. 

SELECT 'PART_1', COUNT(*)  
   FROM TAB_LIST_PARTITION_NULL PARTITION (PART_1) 
 UNION ALL  
SELECT 'PART_2', COUNT(*)  
   FROM TAB_LIST_PARTITION_NULL PARTITION (PART_2) 
 UNION ALL  
SELECT 'PART_3', COUNT(*)  
   FROM TAB_LIST_PARTITION_NULL PARTITION (PART_3) 
 UNION ALL  
SELECT 'PART_4', COUNT(*)  
   FROM TAB_LIST_PARTITION_NULL PARTITION (PART_4) 
UNION ALL  
SELECT 'PART_NULL', COUNT(*)  
   FROM TAB_LIST_PARTITION_NULL PARTITION (PART_NULL) 
UNION ALL  
SELECT 'PART_DEFAULT', COUNT(*)  
   FROM TAB_LIST_PARTITION_NULL PARTITION (PART_DEFAULT); 

The resulting table with the name of the partitions and the 
number of records in each partition is shown in Table III. 

TABLE III. NUMBER OF RECORDS IN THE 

TAB_LIST_PARTITION_NULL TABLE 

PART_ COUNT(*) 

PART_1 1 

PART_2 0 

PART_3 1 

PART_4 1 

PART_NULL 2 

PART_DEFAULT 1 

List partitioning offers two options to solve the problem of 
null values. The first option is the use of the default partition 
type, but with this option it is important to realize that in 
addition, records with null value, records with values that do 
not belong to any other partition will also be stored here. The 
second option is to use a null partition type, so only records 
with null value of the partition key column will be stored in 
this partition. 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 198 ----------------------------------------------------------------------------



C. Hash partitioning 

Another way to divide the database table into partitions is to 
use partitioning by HASH. There is no need to specify 
explicitly partitions as in the RANGE or LIST partitioning. 
We only specify column according to which the partition will 
be created and number of partitions which will be created. If 
the number of partitions is not included, the system creates 
only one partition as default.  

The following code displays the creation of the 
tab_hash_partitioning_null database table together with the 
HASH partitioning definition. We created partitions using the 
creation_date column and defined the number of partitions to 
the number four. So, the system created four partitions.  

CREATE TABLE tab_hash_partition_null( 
  record_id NUMBER NOT NULL PRIMARY KEY, 
  creation_date DATE, 
  text  VARCHAR2(30)) 
PARTITION BY HASH (creation_date) 
 PARTITIONS 4 
/ 

After creating the table, we inserted the same records into 
the database table as in the previous examples. All records 
have been successfully inserted into the table. Even those 
records that did not have a defined creation_date column. 

Subsequently, we searched for records in individual 
partitions using the following SELECT statement. While we 
found that there are four records in the first partition and one 
record in the last partition. We obtained the names of the 
partitions through the partition_name attribute from the 
user_tab_partitions table. 

SELECT 'PART_1', COUNT(*)  
   FROM TAB_HASH_PARTITION_NULL PARTITION (SYS_P34704)  
 UNION ALL  
SELECT 'PART_2', COUNT(*)  
   FROM TAB_HASH_PARTITION_NULL PARTITION (SYS_P34705)  
 UNION ALL  
SELECT 'PART_3', COUNT(*)  
   FROM TAB_HASH_PARTITION_NULL PARTITION (SYS_P34706)  
 UNION ALL  
SELECT 'PART_4', COUNT(*)  
   FROM TAB_HASH_PARTITION_NULL PARTITION (SYS_P34707); 

The result of the above SELECT statement can be found in 
Table IV. 

TABLE IV. NUMBER OF RECORDS IN THE 

TAB_HASH_PARTITION_NULL TABLE 

PART_ COUNT(*) 

PART_1 4 

PART_2 0 

PART_3 0 

PART_4 1 

After getting the records from the first partition using the 
following SELECT statement, we got the records that are 
stored in the partition.  

SELECT * 
   FROM TAB_HASH_PARTITION_NULL PARTITION (SYS_P34704); 

The result of the previous SELECT statement, which 
selects only data from SYS_P34704 partition, can be found in 
Table V. 

TABLE V. RECORDS IN THE SYS_P34704 PARTITION  

Record ID Creation date Text 

2 21.12.2021 Text2 

3 NULL Text3 

4 21.10.2023 Text4 

5 NULL Text5 

In this example, we can see that there is no problem with 
null values in HASH partitioning. The system inserts a record 
with null value of the given column into the partition obtained 
by calculating its hash function. In general, in the case of 
HASH partitioning, records with the null value of the partition 
key column can be stored in any partition. 

VII. CONCLUSION

The main aim of this paper was to create a methodology 
for managing partitions with records with null values and 
show how to store records in partitioned tables. If the records 
contain not null value in the partition key column, there is no 
problem with inserting them into the table. The problem arises 
if we try to insert a record with null value of the partition key 
column into the table.  

In this paper, we decided to demonstrate examples of 
storing records with null values in partitioned database tables.  

The introduction of this paper describes what null values 
are and why their storing and processing is important. Null 
values cause a problem in their storage and further processing. 
The following chapter focuses on partitions. In this chapter, 
partition meaning and types of partitions (range, list, hash, 
composite partitions) are described in more detailed. After so-
called theoretical part, the chapter with our experiments 
follows. For each type of partition, the practical examples of 
how records with null values behave when they are inserted 
into database tables divided into partitions, are demonstrated.  

To summarize, in our experiments we focused on three 
types of partitioning. In the first experiment, we showed how 
it is possible to store records with null values of the partition 
key column in a table that uses RANGE partitioning. We 
demonstrated a sample of two options for creating partitions. 
First, we created a database table in which we defined the 
partitions directly, and then we created a database table in 
which the partitions were defined dynamically. In both cases, 
we tried to solve the problem of storing records with null 
values of the partition key column. The second experiment 
was focused on LIST partitioning. In this experiment, we 
again looked for a suitable solution for storing records with 
null values of the partition key column. We have shown two 
ways in which these records can be stored. The last third 
experiment was focused on HASH partitioning and its way of 
handling records with null values of the partition key column. 

ACKNOWLEDGMENT 

It was supported by the Erasmus+ project: Project number: 
2022-1-SK01-KA220-HED-000089149, Project title: 
Including EVERyone in GREEN Data Analysis 
(EVERGREEN) funded by the European Union. Views and 
opinions expressed are however those of the author(s) only 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 199 ----------------------------------------------------------------------------



and do not necessarily reflect those of the European Union or 
the Slovak Academic Association for International 
Cooperation (SAAIC). Neither the European Union nor 
SAAIC can be held responsible for them. 

This paper was also supported by the VEGA 1/0192/24 
project - Developing and applying advanced techniques for 
efficient processing of large-scale data in the intelligent 
transport systems environment. 

REFERENCES 
[1] Fatima H., Wasnik k., “Comparison of SQL, NoSQL and NewSQL 

Databases for Internet of Things”, IEEE Bombay Section Symposium, 
2016 

[2] Kvet M., “Identifying and Treating NULL Values in the Oracle 
Database – Performance Case Study”, Conference of Open 
Innovation Association, FRUCT, 2023, pp.161-168 

[3] Lim L., “Elastic Data Partitioning for Cloud-based SQL Processing 
Systems”, International Conference on Big Data, 2013, pp 8-16 

[4] Matiaško K., Vajsová M and Kvet M., Advanced database systems 2,  
Žilina, Edis 2017 

[5] MySQL website, Restrictions and Limitations on Partitioning, Web: 
https://dev.mysql.com/doc/refman/8.3/en/partitioning-
limitations.html 

[6] Neumann T., “Reasoning in the Presence of NULLs”, International 
Conference on Data Engineering (ICDE), 2018, pp 1682-1683 

[7] Oracle,  “Database Concepts”, 2021 
[8] Oracle, “Oracle Partitioning”, 2019 
[9] Oracle website, VLDB and Partitioning Guide, Web: 

https://docs.oracle.com/en/database/oracle/oracle-database/23/vldbg 
[10] Spurthi B., Rutuja B., and Vaishnavi B., “Small-Scale Relational 

Database Management System”, IEEE Pune Section International 
Conference, PuneCon, 2022 

[11] Šalgová V. and Matiaško K., “Reducing Data Access Time using 
Table Partitioning Techniques”, International Conference on 
Emerging eLearning Technologies and Applications (ICETA), 2020, 
pp. 564-569 

[12] Šalgová V. and Matiaško K., “The Effect of Partitioning and 
Indexing on Data Access Time”, Conference of Open Innovation 
Association, FRUCT, 2021, pp. 301-306 

[13] Wisal K., Cheng Z, Bin L, Teerath K. and Ejaz A., “Robust 
Partitioning Scheme for Accelerating SQL Database”, International 
Conference on Emergency Science and Information Technology, 
ICESIT, 2021, pp. 369-376 

ISSN 2305-7254________________________________________PROCEEDING OF THE 35TH CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 200 ----------------------------------------------------------------------------


