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Abstract—Classical version of the neighborhood search 
based on exchange operation tests objective function of solution 
obtained by the exchange operation and depending on the 
objective function value decides on further progress.  When a 
series of Pareto-optimal solutions of the p-location problem is 
determined, huge number of such operations must be tested and 
evaluated. As many of exchanges are repeated with the same 
consequence for the further progress, it is questionable whether 
the previously obtained information about their success can be 
taken into account in the decision process. In this contribution, 
we focus on answering this question. We perform the associated 
research of influence of information about previous success or 
failure on effectiveness of the neighborhood search application 
to determination of a set of Pareto-optimal solutions. 

Keywords—Location problems, conflicting criteria, Pareto 
front approximation, valued neighborhood 

I. INTRODUCTION 

Data analysis has become an integral part of many 
information systems and other software products because it 
provides very valuable information resulting from real 
operational data. In the case of the design and optimization of 
public service systems, which is also the subject of this 
contribution, it is mainly about the detailed analysis of client 
requirements, the search for the most important characteristics 
of the system and the related formulation of the associated 
objective functions. The main goal of optimization is to ensure 
better availability and better quality services for system users. 

When two or more objectives need to be optimized, the 
Pareto front, which is an individual collection of non-
dominated solutions, must be sought. When evaluating 
solutions that represent designs for public service systems 
from the perspective of two contradictory objectives, the 
Pareto front is a crucial instrument for a system inventor to 
compromise those objectives. The aforementioned issues are 
members of the discrete location problem family, which has 
garnered considerable interest from researchers [1-8, 10, 19-
25]. 

The Pareto front can be determined numerically through 
the bisection process, in which two integer linear 
programming runs comprise one phase of the procedure. The 
bisection procedure is notably time-consuming as a result of 
the unpredictability of the precise optimization procedure's 
computational time [9, 11, 12]. Consequently, a sequence of 
endeavors ensued to utilize heuristic techniques in order to 
generate a set NDSS of solutions that are non-dominated and 
can be used to approximate the original Pareto front. 

The objective function of the solution acquired through the 
exchange operation is evaluated in the classical version of 
neighborhood search based on exchange operation. The value 
of the objective function determines whether further progress 
is made.  After identifying a sequence of Pareto-optimal 
solutions for the p-location problem, an enormous number of 
these operations must be evaluated and tested. Given the 
repetitive nature of numerous exchanges that yield identical 
results regarding subsequent developments, the relevance of 
previously acquired information regarding their successes in 
informing the decision process raises doubts. Our contribution 
is centered around providing an answer to this inquiry. 

II. MULTI-CRITERIAL PUBLIC SERVICE SYSTEM DESIGN 

A discrete location problem involves the selection of p 
sites from a set of m candidate locations to minimize a 
particular criterion value. Thus the set of all feasible problem 
solutions Y can be defined as Y={y: y{1, …, m}, y=p}. 

The quantified criteria of the distinct elements of Y rely on 
the specific formulation of the locating problem. When it 
comes to designing a private service system, the main goal is 
typically to minimize the overall cost of distributing services 
from service centers to users. The overall expense typically 
increases in direct proportion to the combined weighted 
distances between consumers and their nearest service 
location. When designing a public service system, the 
situation becomes more intricate because there are multiple 
perspectives to consider on the system's usefulness. The 
applicable criteria can be categorized into two kinds known as 
system criteria and fairness criteria. The system criterion aims 
to minimize the level of dissatisfaction experienced by the 
average user of the system, whereas the fairness criterion aims 
to minimize the level of dissatisfaction experienced by the 
most disadvantaged minority of system users. The system 
criterion can be quantified as the mean response time of the 
system, assuming that a user's request is fulfilled by the closest 
service center. The fairness requirement can be quantified by 
the sum of users' requests that fall outside a certain radius R 
from the closest service center. 

Considering random occurrence of the users’ demands and 
limited capacity of the service centers, the nearest available 
center need not mean the nearest center due to possible 
occupancy of the nearest center. This situation can be 
modelled by series q1, q2, …, qr of probability values, where 
qk expresses the probability that the k-th nearest service center 
is the nearest available one [18]. If tij denotes time necessary 
for transport of service from a possible service center location 



i to a user located at location j{1, …, n} and if bj denotes 
frequency of the demand occurrence at a user’s location j, then 
the system objective function f1(y) can be defined by (1). 
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In formula (1), the mink operation performed on a set of 
values returns the k-minimum value from the set. 

The fairness criterion can be expressed by (2), see [12]. 
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The criteria f1 and f2 are in conflict, which means that a 
decrease in one of them is paid for by an increase in the other. 
It follows that there is no optimal solution, but a usable result 
of the two-criterion problem can be seen in determining such 
a set PF of solutions that satisfy clauses (3) and (4). 

        1 1 2 2

For each ,  there exists :

 and 

PF

f f f f 

 x Y y

y x y x
 (3) 

        
       

1 1 2 2

1 1 2 2

For each pair , ,  it holds that

either  and 

or  and 

PF

f f f f

f f f f



 

 

y z

y z y z

y z y z

 (4) 

Such a set PF is called a Pareto front. If two solutions x 
and y satisfy (3), it is said that solution y dominates solution x. 

III. APPROXIMATION OF PARETO FRONT OF PUBLIC 

SERVICE SYSTEM DESIGNS 

The frame of the further considered approach is 
represented by the gradual refinement scheme, which 
constructs the Pareto front approximation starting with an 
initial set of two elements and continuing with gradual 
inserting of the newly determined non-dominated solutions 
[13, 14, 15, 16]. 

The initial pair of bordering solutions can be determined 
by a twin of exact optimization processes so that they 
minimize one of the applied objectives. This initial part for 
Pareto front approximation is very simple and does not require 
enormous computational resources. 

The current approximation of the Pareto front (NDSS) is 
kept in the form of ordered set of non-dominated solutions, 
which is easy to update whenever a candidate for insertion 
emerges. Complexity of the associated procedure is 
proportional to the number of NDSS members [13, 14, 15, 16]. 

The gradual refinement scheme subsequently chooses 
members of the current NDSS and submits them to a searching 
process to achieve an improvement of the Pareto front 
approximation.  

As the Pareto front completion is a hard computational 
problem, we concentrate our effort on establishing a good 
approximation of it. The approximating collection of non-
dominated solutions (NDSS) will be represented by a sequence 
of noNDSS solutions y1, …, ynoNDSS ordered according to 
increasing values of f2. Here, the symbol noNDSS represents 
the cardinality of the NDSS set and it is assumed to be non-
negative integer. To measure the quality of the NDSS and the 
proximity of NDSS to PF, one may use so-called Area 

A(NDSS), which is computed according to (5) for any set of 
solution either NDSS or the original PF. 
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Each update of the NDSS by a new solution y is followed 
by a reduction of the NDSS-Area and the associated value is 
bounded from below the PF-Area. 

As mentioned in previous sections, a good metric for 
comparing to sets of solutoons is the area formed by the 
members of PF and NDSS respectively. The area can be 
computed easily by the expression (5). To avoid reporting and 
comparing high values of areas, a simpler coefficient called 
gap can be used. Generally, gap can be understood as a 
relative difference between two values. In our case, it can be 
expressed by (6). 
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IV. NEIGHBORHOOD SEARCH WITH LOCATION 

REWARDING 

A The neighborhood search heuristics has proved to be an 
efficient approach to p-location problem solving, especially 
when the neighborhood of a current solution is determined by 
all results of 1-1 exchange operations. The operation, which 
exchanges one of the chosen locations for one of the non-
included, preserves the number p of located service centers. 
There are several strategies, which can be applied to 
determination of new current solution. The strategies can be 
generalized by redefinition of the notion “admissibility” of 
the candidate for the new current solution and by “range” 
used for final choice of the new current solution. The process 
of the neighborhood heuristic can be also limited by time T 
of its run. The candidate for the new solution is considered to 
be admissible, if its objective function value is better than the 
objective function of the current solution at least by the 
amount A. The range of the new current solution selection is 
determined by the number N of revealed admissible solutions, 
from which the best solution is chosen and declared to be the 
new current solution. This algorithm was applied in the 
procedure constructing a good approximation of the Pareto 
front of bi-criterial p-location problem solutions. The 
presented research is focused on answering the question of 
how can rewarding of individual locations affect efficiency 
of the searching process. The generalized neighborhood 
search heuristics is equipped with a list I of newly established 
current solutions during one run of the algorithm.  

In the below description of the generalized heuristic 
algorithm, the following denotations are used. 

P stands for the set of p selected locations, which 
determine the current solution. 

M stands for the set of all possible service center 
locations. 

Ex(P, i, j) stands for the neighboring solution obtained 
from P by exclusion of the location i P and insertion of  the 
location j M-P. 



F(j) – stands for the reword of the location j. 

 

GeneralizedNeighborhoodSearch(P, T, N, A, I, F) 

0. Set OK = true. 

1. If CPU  T and OK, then set n = 0, f* = f(P), i* = 0, 
Q=M-P, maxR=0 and continue with step 2. 
Otherwise return P and terminate. 

2. While n<N and OK perform the following 
commands for each pair (i, j), i P , j  Q, and after 
the cycle has been terminated, go to step 3. 
If  f( P) – f(Ex (P, i, j))  A , then set n =n+1 and 
compute currR=(f(P) – f(Ex(P, i, j)))*F(j)  
if maxR < currR, then set maxR = currR, i* = i, j* =j. 

3. If i* > 0, then define the new current solution P = 
Ex(P, i*, j*), and  insert j* into I , else set OK = false. 
Continue with step 1. 

The above algorithm is subsequently applied to 
processing of each non-dominated solution of a current 
approximation of the Pareto front. The processed solutions 
solves the same bi-criterial p – location problem, but used 
objective function combining the both criteria slightly differs 
depending on the input solution. This fact evoked an idea that 
once successful inserted location may be advantages for 
insertion in other runs of the algorithm. The starting reward 
of every location is set at the value of 1 at the beginning of 
whole approximating process and after each run of the 
GeneralizedNeighborhoodSearch the elements of the list I 
are processed and their rewards are updated based on 
difference D of the objective function values of input and 
output solutions. This updating is performed according to the 
rule F(j) = F(j) + D/Dmax for j  I, where Dmax is theoretically 
maximal improvement. After these adjustments, forgetting 
rule is applied to each location j  M. The rule is described 
by F(j) = F(j)*(1-Ro), where Ro is parameter of the rule.  

V. NUMERICAL EXPERIMENTS 

The goal of the computational study is to investigate of 
how can rewarding of individual locations affect efficiency 
of the searching process in the Pareto front approximation. 
Quality of Pareto front approximation is evaluated by the 
resulting gap between the approximation and exact Pareto 
front areas. The study is carried out on eight benchmarks 
derived from existing public service systems ensuring 
emergency medical aid in the higher territorial units - HTU 
of the Slovak Republic. The exact Pareto fronts were 
presented in [9, 11] and the associated characteristic are 
reported in Table 1, where each studied instance corresponds 
to one row of the table. The first two columns denoted by m 
and p contain the problem size. The NoS stands for number 
of solutions forming the Pareto front (PF) and the A(PF) 
denotes associated Area. The list of problem instances 
contains the HTU of Bratislava (BA), Banská Bystrica (BB), 
Košice (KE), Nitra (NR), Prešov (PO), Trenčín (TN), Trnava 
(TT) and Žilina (ZA). In the used input data, all inhabited 
network nodes represent the set of possible candidate 
locations of service centers and the possible demand locations 
as well. 

Table 1: Problem sizes and the exact Pareto fronts characteristics 

HTU m p NoS A(PF) 
BA 87 14 34 569039 
BB 515 36 229 1002681 
KE 460 32 262 1295594 
NR 350 27 106 736846 
PO 664 32 271 956103 
TN 276 21 98 829155 
TT 249 18 64 814351 
ZA 315 29 97 407293 

 

In this computational study the parameters of T, N and A, 
were set at values, which were found in the previous research 
[17, 24]. The values were T=0.91 [s], N=19, A=0. 

The experiments were performed for various values of Ro. 
The reached approximation of the Pareto front is 
characterized by gap, what is difference between areas of the 
reached approximation and the exact Pareto front expressed 
in percentage of the area determined by the exact Pareto front. 

Table 2: Results of numerical experiments – table of gaps for 
different values of Ro, for the case Ro = 0, no update of F was 
performed 

Ro  0 0.01 0.02 0.04 0.08 
ZA  1.25 1.79 1.79 1.79 1.79 
TT  0 0 0.09 0.09 0 
TN  0.73 0.73 0.73 0.73 0.73 
PO  0.14 0.13 0.14 0.14 0.13 
NR  0.99 0.38 0.25 0.25 0.25 
KE  1.39 1.21 0.79 1.6 1.24 
BB  0.32 0.96 0.52 0.48 0.83 
BA  2.18 1.58 1.58 1.58 1.58 
sum 7.02 6.8 5.89 6.66 6.56 

 

It must be noted that the computational time of one 
gradual refinement applied on one instance was limited by 
300 seconds. 

The experiments reported in this study were performed on 
a common PC equipped with the Intel® Core™ i7-3610QM 
CPU@2.30 GHz processor and 8 GB RAM. The algorithms 
were implemented in Java programming language in the 
NetBeans IDE 8.2 software. 

VI. CONCLUSIONS 

Discrete location problems can be used in a large variety 
of important tasks, the goal of which is to minimize either 
transportation or social costs of service systems providing 
broad set of users with service from several service centers. 
Quality of the service system designs may be evaluated by 
several contradicting criteria. 

This scientific paper was focused on such service system 
designs problem, in which so-called system and fair criteria 
need to be taken into account. Since creation of the exact 
Pareto frontier is a hard challenge that requires a lot of 
computational resources including high process time, the 
attention of researchers has been paid to the development of 
various approximate solving approaches. 

To determine a good approximation of the original Pareto 
front, the neighborhood search strategy can be applied as a 
base for development of different sophisticated algorithms. 



The classical form of the neighborhood search algorithm 
evaluates the objective function of a solution produced 
through an exchange operation. Based on the value of the 
objective function, it determines the next steps to be taken. 
When identifying a sequence of Pareto-optimal solutions for 
the p-location problem, a substantial number of these 
operations need to be tested and evaluated. Given the 
repetitive nature of many exchanges and their consistent 
outcomes, it is uncertain whether the previously acquired 
information regarding their performance should be considered 
in the decision-making process. Our objective in this 
contribution was to provide an answer to this topic. We 
conducted study on the impact of information on past success 
or failure on the efficacy of the neighborhood search 
application for determining a set of Pareto-optimal solutions. 

Based on performed computational experiments, we can 
conclude that we have achieved a very good results in 
acceptably short computational time. This observation makes 
proposed method very useful. 

Future development in this area could be focused on 
research of self-learning processes for dynamic parameter 
setting or on other effective heuristic methods for Pareto front 
approximation. 
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