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Abstract  Temporal databases are used to monitor states in 
the object, attribute, or group granularity. Performance of the 
data retrieval is a critical requirement, consisting of relevant 
data block identification, loading, and tuple extraction. Instance 
memory loading must always take the whole block. This paper 
deals with the impact of block size on the performance of 
temporal databases, by pointing to block fragmentation, 
expansion, and shrinking. It also points to the definition of block 
migration, if the tuple after the Update operation does not fit the 
original block. 

Keywords temporal database, block, fragmentation, 
shrinking, retrieval, performance 

I. INTRODUCTION 

The IT industry has changed significantly over the 
decades. Originally, there was only a small amount of data to 
be handled, commonly representing current environment 
properties by the conventional approach. It meant original data 
were physically replaced by newer versions. Later, the amount 
of data started to rise. Nowadays, data management is 
identified by the dynamics and complexity. It is necessary to 
store and reflect the whole evolution forming a temporal 
environment. Thus, instead of replacing the original state 
physically, the new version is created and stored, delimited by 
the validity time frame. From the architectural point of view, 
relational databases are still the most often used due to a 
security perspective. The relational paradigm is associated 
with data consistency and a strict data model supervised by the 
integrity constraints managed by the transactions. Thus, any 
data portion loaded into the database must pass all the integrity 
constraints to be accepted [5], focusing on threat defense [14]. 
Such checking is done either immediately after the statement 
itself or at the end of the transaction. Whereas the data 
complexity and demands are still rising, the relational 
paradigm was extended by object-oriented attributes, XML, or 
JSON definitions [5].  

The data management is operated on the block-level 
structure physically by locating a particular block and treating 
data. Thus, the block size and its complex management are 
critical, whereas the loading and evaluation are done on the 
block granularity.  

This paper aims at database block management and 
performance impacts to optimize the processing. In the first 
part, temporal database principles are summarized stating the 
study environment, followed by the data retrieval process and 
evaluation. It relates to the block size impacts, emphasizing 
the data fragmentation. During the computational study, a 
temporal environment is used. Temporal systems are rather 
dynamic and storage demands evolve rapidly. Thus, each 
Update and Insert operation brings a new data object version. 
On the other hand, to ensure performance and relevant 
information value,  historical data are continuously aggregated 
and migrated to the archive repositories, data warehouses, or 

marts consequencing in block fragmentation. Moreover, there 
can be data corrections (e.g. getting higher precision, getting 
the delayed data from the sensor or satellite) forming two-
dimensional space for the temporality  not only validity is 
monitored, by transaction correctness, as well. If the data do 
not fit the originally associated block space, migration is 
present. To reach complexity and performance, individual 
object states are grouped together into the same neighbor 
blocks simplifying the evaluation and loading perspectives. 
The aim is to optimize physical block architecture and 
infrastructure, reflected by the air transport system usage, by 
which the proper and accurate data retrieval process must be 
ensured.  

This paper is structured as follows. Chapter 2 deals with 
the temporal database definition forming state-of-the-art. 
Chapter 3 deals with the table indexes as the core elements 
ensuring the performance by effective block location. Chapter 
4 focuses on fragmentation management, migration handling, 
and block shrinking by proposing own techniques for 
optimizing physical structure. Chapter 5 evaluates the impacts 
of the block size by emphasizing the computational study and 
performance impacts.  

Performance evaluation for the block size impact 
identification using the temporal environment has been 
performed in Oracle Database 19c  Enterprise Edition 
(Release 19.0.0.0.0  Production) system. Server parameters 
are: processing unit: Intel Xeon E5620; 2,4GHz (8 cores), 
operation memory: 48GB, SSD drive: 1 000GB.  

A spatio-temporal data locating and identifying airplane 
objects by the occurrence time, and GPS position was used, 
delimited by the speed, destination, current airspace 
association (entry and exit time), planned route vs. current 
route, as well as the weather conditions influencing the flight. 
There were 20 attributes, enclosed by the validity time frame. 
The data set consists of 1 808 390 data tuples in total. 
Examples of the data are in fig. 1:  

 

 
Fig. 1. Solution  Shrinking space module architecture 

II. TEMPORAL DATABASES 

Temporal databases arizes from the conventional 
principles by extending the state definition by the Date and 
Time borders, mostly defining the validity. Generally, there 
are three principles related to the granularity levels  object, 
attribute, and group granularity.  

In object-oriented granularity, the whole state is extended 
by the validity frame. Thus, if any change occurs, a 



completely new state image of the object is created. As a 
consequence, any state identification is straightforward and 
can be obtained easily taking the validity range. On the other 
hand, there can be severe limitations related to storage 
capacity. Therefore, to ensure performance, it is necessary to 
synchronize changes, otherwise, many duplicate values are 
present, and identification of real change can be complicated 
and demanding [1] [3]. The opposite solution is delimited by 
the attribute granularity extending each data value (attribute) 
by a Date and Time reflection. The complex state itself is then 
composed of individual attribute states [7]. The interlayer is 
defined by the synchronization groups processing not only 
attributes separately but they can be grouped if the change 
occurs at the same time [7]. The synchronization group is 
applied dynamically and is also temporal. It provides the 
universal solution, even conventional attributes with no time 
perspective can be covered. From the definition point of 
view, the table can be static (no changes can be present), 
conventional (data are not monitored over time), or temporal. 
The architecture consists of the Group detector, Group 
manager, and Synchronization layer responsible for the group 
forming and dynamic drops. Data themselves are part of three 
layers reflecting the validity  current valid states, non-actual 
data (future and historical), operated by the temporal 
management [7]. For the evaluation study, group granularity 
is used. Data are provided from the air transport systems and 
sensors.  

Fig. 2 shows the architecture of the group-level temporal 
system. Data flow is taken to the temporal management layer, 
interconnected with current and inactual data representations. 
Future and historical data are attribute-oriented, current valid 
states use object granularity. The reason is based on the 
possibility of using conventional applications and their 
interconnection to the temporal architecture, whereas they 
just require current valid states in object granularity to form 
the result set. Besides the main temporal management, data 
synchronization is continuously monitored by the Group 
detector layer. If the group is detected, the Group manager 
creates new synchronization by notifying the 
Synchronization layer. The whole activity is supervised by 
temporal management, which stores the synchronization 
groups in a temporal architecture, as well. 

 
Fig. 2. Temporal database architecture 

III. RETRIEVAL & INDEXING 

The SQL language is a non-procedural language by 
specifying the data to be obtained with no step-by-step user 
construction. The evaluation and result set composition is the 

responsibility of the database system manager. The database 
system itself is formed by the instance consisting of the 
memory structures and background processes and the 
database delimited by the physical file storage, either in the 
local server or Cloud environment. A physical database is 
represented by the storage, covering data files. They are block 
oriented with a fixed size. To get the data from the database, 
relevant data blocks must be identified and transferred into the 
memory for consecutive evaluation. Thus, the smallest data 
portion to be operated is a block itself. However, data blocks 
are not created and associated separately, due to the high costs 
of the operation. Therefore, each table is formed by the 
extents, from the physical perspective. In fact, the extent is an 
array of data blocks (using a linked list), physically allocated 
in the continuous disc space. Thus, each block is part of the 
extent, which are interconnected forming a linear linked list. 
The table is formed by the specification and delimited by the 
data segment. It takes a chain of extents associated with the 
table (fig. 3). The last block of the table is pointed by the High 
Water Mark (HWM). Thus, by scanning the blocks 
sequentially, the upper limit is reflected just by the HWM. 
During the processing, fragmentation occurs as a consequence 
of the block and tuple size, updates, and deletes of the states. 
The main problem is just the empty block, which is loaded 
into the memory Buffer cache for evaluation during the 
sequential scanning. Such an operation is named the Table 
Access Full (TAF) method.  

 
Fig. 3. Structure definition  segment, extent, and block structures [5] 

When dealing with data retrieval, evaluation and relevant 
data extraction passing all the conditions is a staged process. 
Fig. 4 shows the data retrieval process by parsing the query 
and selecting the best suitable access path followed by 
providing the row sources and building the result set.  

The TAF method is characterized by sequential data block 
scanning. There is no option to identify the fill ratio of the 
blocks, nor to detect completely empty blocks. Instead, each 
block content is sequentially copied to the memory Buffer 
cache for evaluation using I/O operation [5] [6]. Buffer cache 
memory structure is formed as a matrix of the blocks, which 
can be empty (newer used or directly prepared for the 
loading), clean (hold data, which can be, however, directly 
rewritten, whereas they do not hold any extra data difference 
in comparison with the database storage reflection) or dirty 
(locked blocks, which hold new data, which must be stored in 
the database before rewriting and consecutive processing) [6]. 
Thus, for the TAF, memory space for the loading must be 
identified, followed by the I/O operations, which are time and 
resource-consuming. 



 
Fig. 4. Data retrieval process definition [5] 

  Another option for data source identification is based on 
using indexes. An index is an optional structure associated 
with the table, which can be used for the data location by using 
the index key, which must be compatible with the query. 
There are many types of indexes (B+tree, bitmap, hash 
indexes, clusters, etc.) with various enhancements (reverse, 
compression, function-based, virtual column indexing, etc.) 
[2] [4] [8]. The default strategy used in an object-relational 
database environment is associated with the B+tree consisting 
of the root nodes, and internal nodes by traversing using the 
index keys and leaf nodes referencing the data using the 
ROWID pointers. ROWID address is a direct data locator 
formed by 10 bytes, consisting of the identifier of the data file, 
particular data block, and position of the row inside it. Thus, 
it is the fastest access to the data. For data retrieval, the index 
can have significant performance impacts. Firstly, the 
traversing index is far faster in comparison with sequential 
loading and scanning. Namely, there is no non-relevant block 
loading necessity. Secondly, the leaf node of the index 
provides a direct address, so the accessibility is 
straightforward. Thirdly, the index is rather wide than deep, so 
the amount of data path in the index is strictly limited. Note, 
that despite the fact, ROWID points to the data position inside 
the block, the loading operation always refers to the block 
itself, thus, always, the whole block is loaded.   

 Index definition and usage can have many negative aspects 
to be highlighted. The index must cover the current situation. 
Therefore, it must be updated during the Insert, Update or 
Delete operations increasing the time processing demands of 
such operations. The second problem is related to the 
undefined (NULL) values, which cannot be mathematically 
compared and are not part of the index. Finally, there is a 
limitation caused by the data migrations, by which the state 
after the change does not fit the original data block and must 
be shifted to another free one. The consequence is associated 
with the existing index set, which does not cover the change, 
and the leaf layer ROWID address still points to the original 
block, where the data are not located. Instead, there is just 
another pointer present there, forcing the system to load a 
different block. In general, such a row chaining can be deep 
resulting in performance degradation. In [7], the solution is 
based on the ROWlog layer replacing physical ROWID 
addresses with logical pointers in a separate layer. Multiple 
indexes can reference that layer used as a physical mapper. 
Therefore, migration is limited by creating new references in 
the additional layer  done only once for all indexes. Other 
solutions described in [9] [10] are related to the undefined 
value coverage by the index delimited by the specific 
extension, which does not use the original index key, but the 
unique row identification is used (either delimited by the 
physical address, primary key or hash value can be used).  

 These techniques and approaches form state of art by 
emphasizing data retrieval and limiting migrated rows. Next 

section deals with the proposed contribution dealing with the 
de-fragmentation and space shrinking, focusing on the block 
size impacts.  

IV. FRAGMENTATION, SHRINKING 

Before introducing our own methods and contribution, 
let's reflect on the physical block management during the 
Insert and Update operation. A user defines a statement to be 
processed. After parsing, and checking privileges, integrity, 
and all the constraints, the row is to be stored physically in 
the database, formed by the extents and blocks associated 
with the table, with HWM as an upper limit. Thus, the task is 
to locate the appropriately suitable block. Over history, four 
approaches can be identified. The oldest and simplest 
solution was based on block set traversing, loading, and 
evaluating, whether it can cover a new row or not [5] [11]. 
That technique was too demanding in dynamic systems, 
reducing the parallelism. Thus, it can be, generally, said, that 
the Insert and Update operation was enclosed by the Select 
statement providing a suitable block. The scanning was done 
sequentially. By reaching the HWM, it was evident, that a 
new extent must be allocated. The first-fit method was used 
to extend the problem of fragmentation  even a small tuple 
can be mapped to large block space.  

The second solution removed the scanning and a new 
tuple was always stored in a new block. From the storage 
perspective, each tuple was stored in a separate block using 
1:1 mapping, which negatively impacted the storage 
demands. Although the block size was reduced, such an 
approach was confusing and quickly rejected [12].  

The third and fourth solutions are based on free space 
block categorization into sets. The first category covers the 
blocks, which are filled from 0 to 25% of the capacity. The 
second category ranges from 25% to 50%, the third delimits 
the range from 50% to 75%, and finally, the last category 
deals with ranging from 75% to 100%. The difference 
between solutions 3 and 4 is based on the data information 
repository, which can be in the data dictionary or part of the 
object structure segment. Based on [5], the data dictionary 
forms the bottleneck due to the high workload and locking, 
so the best suitable solution is operated by table segment 
categorization.  

The algorithm is based on getting the size of the row to be 
processed, followed by identifying the best suitable block 
based on the categorization. Thanks to that, the best suitable 
blocks are used as a priority to reduce fragmentation. That 
profile, however, results in one very important consequence. 
Since the filling of the block is optimized, free or too thinly 
filled blocks are present, but cannot be identified, and are no 
further processed in the current solution. The proposed 
solution uses a fulness ratio and usability prediction soon 
based on the change flow frequency.  

A. Proposed solutions  tuple management 

Categorization of block usage is a relevant strategy to 
minimize fragmentation. Empty (or almost free) blocks are 
then used only if others cannot serve and cover them. 
Therefore, such blocks must be identified to exclude them 
from the TAF processing. SOLUTION 1 is based on 
extending the categorization strategy by dividing the first 
category reflecting the empty blocks with no tuples. It forces 
the system to use 5 categories. The total storage demands are 



extended by 0.1% for the whole segment, irrespective of the 
number of extents. On the other hand, the TAF method can 
significantly benefit by lowering I/O operations. Fig. 5 shows 
the impacts of the TAF method related to the free block ratio. 
The X-axis represents the percentage of the free blocks and
the percentage of the time processing demands cuts. The Y-
axis delimits the scenarios. It represents an almost linear 
dependence type. If the ratio of empty blocks is more than 
28%, the results are almost the same. It is because the loading 
necessity is limited, which is one of the most demanding 
operations during the processing. 

Fig. 5. Data retrieval highlighting empty blocks ratio using TAF

SOLUTION 2 is based on using tuple count 
categorization instead of block fill ratio. By using such an 
approach, empty blocks can be very easily identified. On the 
other hand, it brought additional demands for the Insert and 
Update operation, whereas the count itself does not relate to 
the tuple size. And if the structure of the tuple was dynamic 
from a size perspective, even a block with one tuple cannot 
hold additional rows, whereas the original one fits almost the 
whole block. 

Therefore, SOLUTION 3 extends it by marking 
usability. Once the block is loaded for the potential new tuple 
assigning, it can be marked as full by excluding it from 
further evaluation. This mark is then automatically 
reevaluated during any change on the block. Fig. 5 shows the 
results expressing processing time costs for loading 10, 
1 000, and 1 000 000 rows to the existing structure dealing 
with 10 000 000 rows. It takes the original solution 
categorizing the block fill ratio and solutions 2 and 3. It is 
expressed in the percentage. The reference model 
(SOLUTION REF) is the existing approach used by default 
currently. The aim of the proposed solutions is the maximum
number of tuples covered by the block, compared to the 
existing approach maximizing the full rate. By the diversity
of the data structures and tuple types, such a difference can 
have significant consequences. 

Reflecting the reached outputs, pure tuple count 
(SOLUTION 2) does not bring additional power, whereas the 
size of the tuple is not emphasized, thus the large tuples are 
preferred to map a new row, but the size demands cannot 
cover it. On the other hand, SOLUTION 3 uses marking by 
limiting such a negative aspect. As evident from the results, 
it more properly points to block optimization. Namely, for the 
evaluation, if the block holds more data, there is a natural 
assumption, that the probability it holds particular data is 
increased. 

Fig. 6. Data retrieval highlighting empty blocks ratio using TAF

When dealing with the tuple count, the crucial task is to 
identify the number of covered rows. In principle, if the new 
structure is created, any operation can change the assigned 
value. Tuple count is associated with each data block and can 
be located in a data dictionary, separate structure, or part of 
the block itself. The data dictionary does not provide 
sufficient power due to the locking forming the bottleneck. 
Locating the tuple count directly inside the block is irrelevant, 
to obtain such a value, it would be necessary to load it into 
the memory, so the benefit is removed. The specific structure 
is the most relevant, which can be sorted based on suitability 
using a linear linked list or B+tree (key index value is tuple 
count). Fig. 7 shows the results. It takes tuple count definition 
during the Insert statement to identify a suitable data block. 
In the first phase, the tuple block is taken, then the selection 
is made based on the block fill to ensure coverage. The 
reference model is extracting tuple count into a separate 
structure organized randomly. Data dictionary (is limited by 
the locking and parallelism) and block management (is 
limited by the I/O operations to get the value) reach almost 
the same results. The best solution is based on the B+tree 
lowering the demands up to 40%. By applying the extended 
fill block management, migrated rows are limited, resulting 
in lowering the processing time demands by 49%. 

Fig. 7 shows the performance drop related to various 
architectures dealing with the tuple count for the block.

Fig. 7. Performance of the Insert statement using tuple count architecture

B. Proposed solutions rescanning

In the preceding system, there was an assumption, that 
tuple management is added to the empty system. Thus, there 
are no extents initially and each extent to be allocated is 
initialized by getting a zero value for each block (tuple 



count). However, how to apply the rules, if the tuple count 
management needs to be implemented on an existing system, 
by which the table is formed to multiple extents? How to 
calculate tuple count values without sequential block loading 
into the memory, whereas such activity would be too 
demanding from the time processing, as well as storage 
demands? The Buffer cache structure should be, there, 
emphasized, which is a destination for the block during the 
loading and evaluation. First, a free block must be identified 
there, if there is no one, loading hangs, during which some 
blocks from the Buffer cache are swapped into the disc, so 
the number of I/O is increased. Therefore, it is important to 
find another way to get the tuple count by minimizing I/O 
operations and Buffer cache usage.  

Our proposed solution for the existing system arises from 
the Master indexing, which was first defined in 2017 [7]. One 
of the table indexes covering all the data (NULL values are 
not part of the index) is marked as Master and is used in case 
there is no suitable index for the evaluation. Instead of using 
the TAF method, the Master index is used as a data locator. 
It optimizes access by limiting fragmentation and empty 
block loading. In the proposed solution, it is used for 
calculating tuple count by evaluating ticks for the block 
inside the index. Namely, the Master index is always smaller 
in comparison with the whole tuple, so the number of blocks 
is reduced. Moreover, the index structure is better optimized 
from the storage perspective and consecutive loading. 
Finally, the Master index is often used during the data 
retrieval, so it is at least partially pre-loaded into the Buffer 
cache. Such blocks can be directly used without I/O operation 
necessity (loading).  

The algorithm for the tuple count calculation for the 
existing system starts with the Master index location. If it 
exists, it is used for the calculation by using the block-hit 
ratio. If the Master index is not defined for the table, then the 
system evaluates existing indexes based on the size, pre-
loading, and assumed usage to select one of them to be 
declared as Master. The only condition is that it covers all the 
data tuples to ensure tuple count consistency. Using the 
Master index, tuple count calculation can be done.  

In case there is no index for the table  there is no primary 
key, nor secondary indexes present, tuple count is just 
assumed using the current statistics, block number, and row 
count. Such an estimate can have, however, significant 
performance impacts, if the size of the rows varies 
dynamically for the particular table.  

C. Shrinking space and index impacts 

Free space categorization and tuple count management 
are useful for the data change operation, mostly reflected by 
the Insert statement. Update operation can be considered as a 
Delete operation followed by the Insert statement, typically 
placed to the same data block, if possible. Database systems 
do not shrink space across the data blocks automatically due 
to several reasons [5]. First, it is assumed, that such free 
blocks will be used soon, therefore there is no pressure for the 
structure optimization, where it would be valid only 
temporarily, and later, new extent allocation would be 
demanding. Moreover, data blocks cannot be deallocated 
separately, the management granularity is always the whole 
extent (formed by several data blocks). Finally, data blocks 

are pointed by the indexes, thus the shrinking would cause 
migrated row problems [11].  

On the other hand, there are many occasions, where the 
structure optimization would be beneficial  after the data 
archiving [5], moving to the data warehouse, lake, or mart 
[12], or after the reconsolidation [9], where blocks are free or 
by fixing the data structure and content [13]. By these means, 
if the blocks repository is not optimized, additional blocks 
must be loaded with no relevant content during the TAF 
method. Similarly, index access techniques could be 
degraded by the migrated rows.  

Our proposed technique dealing with the shrinking space 
arises from the logical ROWID management by mapping the 
logical definition part of the index into physical pointers [5]. 
The original approach takes a new migration pointer, thus, 
after the block loading, data are not present in that particular 
block. Our proposed solution references the migration 
mapper layer by replacing the data pointer to the new block, 
where the data are moved. Thanks to that, the original block 
is freed, and removed from the evaluation, whereas no data 
are there. And mostly, existing indexes reference a new 
position after the processing, thus there is no migration 
present. Fig. 7 shows the proposed solution. Each index is 
connected to the migration mapper, extended by the shrinking 
space module, consisting of the blocks and their real size. By 
shrinking the space (operated by the Shrinker background 
process), the Migration mapper is reflected, covering only 
one Update operation, compared to the common migration, 
which must dereference each block separately. Fig. 8 also 
shows the data flow and block interconnection.  

 
Fig. 8. Solution  Shrinking space module architecture 

V. BLOCK SIZE IMPACTS 

The database is formed by the files holding the data. Each 
data file is formed by blocks, in which the data resist. System 
instance is formed by the memory structures and background 
processes. The interlayer between them is the tablespace 
characterizing the physical infrastructure  files, blocks, etc. 
Each database system must contain at least one tablespace 
(like  SYSAUX and SYSTEM tablespaces in DBS Oracle). The 
aim is to group data files with the same characteristics 
together based on the application domain. One of the 
significant parameters is just the block size, which is then 
mapped to the Buffer cache extension  DB_cache. If the 
block size is not specified explicitly for a tablespace, the 
default value is used, set for the whole database. Such a value 
can be obtained by referencing the db_block_size parameter, 
the default value is 8kB and can range from 2kB to 32kB.   
show parameter db_block_size 



NAME TYPE VALUE 
------------------------------- --------------------- ------------
db_block_size integer 8192

The proper value of the database block set can have 
various consequences, like contention reduction, reduced row 
chaining (if the row cannot fit one block), faster scans, and 
lowering the number of loading [5] [6] [7]. 

The size of the block for the tablespace can be set using 
the blocksize clause:

create tablespace <tablespace_name>

  datafile <location_and_name>

     blocksize {2 | 4 | 8 | 16 | 32}K;

However, before creating a tablespace with a non-default 
block value, the DB_cache memory structure for a particular 
block size matrix must be allocated, using the following 
command:

alter system 

   set db_{2 | 4 | 8 | 16 | 32}k_cache_size=<value> {M | G};

The evaluation study analyzed CPU costs (absolute 
values) and processing time (in [mi:ss:ff]). It highlights the 
demands for the table structure separately, and extended 
solution with a primary key index with various block sizes. 
Tab. 1 shows the results of taking 30% fragmentation by 
getting 10 000 rows. It takes an almost uniform definition.
With the rise of the block size, I/O operations and waiting 
times are lowered. It shows, that the main aspect of the data 
retrieval processing is associated with memory loading and 
evaluation. 

TABLE I. RESULTS IMPACT OF BLOCK SIZE TO TABLE STRUCTURE

Block size Costs Processing time
2KB 12378K 06:27:01
4KB 6275K 03:55:35
8KB 3327K 01:58:92
16KB 1689K 01:01:77
32KB 912K 00:34:53

Fig. 9. Results table size block => costs

Block migration reduction benefits from 5% 
fragmentation. Fig. 10 shows the results stating the original 
performance and solution dealing with the proposed technique 
of migration reduction using logical block addresses and 
mappers. Although the original solution uses migration 

pointers, it is always necessary to load a particular block and 
then, reference the pointed block. It uses 8KB block for 
processing. The results highlight CPU costs related to the 
fragmentation ratio. 

Fig. 10. Results fragmentation impacts => costs

VI. CONCLUSIONS

The data amount to be handled is still rising by 
emphasizing efficiency and overall performance. To ensure 
proper decision-making, temporal databases are used, dealing 
not only with the current valid data but also with historical 
states and future valid tuples are present. 

This paper summarizes temporal architectures pointing to 
the granularity levels of the object, attribute, and 
synchronization group. Performance evaluation study takes 
spatio-temporal architecture of the synchronization group, 
dealing with the air traffic. 

It emphasizes the physical database layer and 
infrastructure by pointing to the block size in terms of size, 
memory loading, as well as fill ratio, fragmentation, and 
shrinking. 

Namely, tuple management has been discussed by listing 
the empty blocks excluded from the evaluation stream. The 
storage demands are extended by 0.1%. The fill ratio 
procedure is covered by another proposed solution, however, 
as discussed and evaluated, it does not bring a robust solution, 
whereas the tuple size can be dynamic. Thus, rather tuple 
count coverage by the block is preferred, lowering the 
performance demands of the retrieval to 90.3%.

The complexity of the proposed architecture highlights 
the data migration, by which the original index ROWID does 
not precisely locate the block with particular data and 
shrinking space module. In that architecture, each extent is 
rescanned by pointing to the empty blocks, and grouping 
them by the linked list array. 

The second part of the paper deals with the block size 
demands. As evident from the results, total costs are almost 
linear reflecting the block size definition (30% data 
fragmentation is present). The main advantage is based on the 
fragmentation limitation, which is lowered with the rise of the 
block size. The default 8KB block requires 01.58:92 for the 
processing, while 2KB requires 06:27:01 and 32KB denotes 
00:34:53. Thus, it is almost linear. On the other hand, if the 
block size increases, more memory space is also required for 
mapping. Therefore, the best solution is to use various block 
size levels, based on the data types and tuple structure. 

In future research, we would like to evaluate the impact 
of tablespace definitions related to physical storage and data 
distribution to create a complex methodology of performance 



evaluation in the temporal environment. There is an 
assumption the various environment and distribution 
characteristics can bring additional power by parallelizing the 
process of the retrieval by pointing to the migration mapper 
located in separate disc storage.  
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