

Michal Kvet

Department of Informatics, Faculty of Management Science and Informatics

Michal.Kvet@fri.uniza.sk

Abstract Temporal databases are used to monitor states in
the object, attribute, or group granularity. Performance of the
data retrieval is a critical requirement, consisting of relevant
data block identification, loading, and tuple extraction. Instance
memory loading must always take the whole block. This paper
deals with the impact of block size on the performance of
temporal databases, by pointing to block fragmentation,
expansion, and shrinking. It also points to the definition of block
migration, if the tuple after the Update operation does not fit the
original block.

Keywords temporal database, block, fragmentation,
shrinking, retrieval, performance

I. INTRODUCTION

The IT industry has changed significantly over the
decades. Originally, there was only a small amount of data to
be handled, commonly representing current environment
properties by the conventional approach. It meant original data
were physically replaced by newer versions. Later, the amount
of data started to rise. Nowadays, data management is
identified by the dynamics and complexity. It is necessary to
store and reflect the whole evolution forming a temporal
environment. Thus, instead of replacing the original state
physically, the new version is created and stored, delimited by
the validity time frame. From the architectural point of view,
relational databases are still the most often used due to a
security perspective. The relational paradigm is associated
with data consistency and a strict data model supervised by the
integrity constraints managed by the transactions. Thus, any
data portion loaded into the database must pass all the integrity
constraints to be accepted [5], focusing on threat defense [14].
Such checking is done either immediately after the statement
itself or at the end of the transaction. Whereas the data
complexity and demands are still rising, the relational
paradigm was extended by object-oriented attributes, XML, or
JSON definitions [5].

The data management is operated on the block-level
structure physically by locating a particular block and treating
data. Thus, the block size and its complex management are
critical, whereas the loading and evaluation are done on the
block granularity.

This paper aims at database block management and
performance impacts to optimize the processing. In the first
part, temporal database principles are summarized stating the
study environment, followed by the data retrieval process and
evaluation. It relates to the block size impacts, emphasizing
the data fragmentation. During the computational study, a
temporal environment is used. Temporal systems are rather
dynamic and storage demands evolve rapidly. Thus, each
Update and Insert operation brings a new data object version.
On the other hand, to ensure performance and relevant
information value, historical data are continuously aggregated
and migrated to the archive repositories, data warehouses, or

marts consequencing in block fragmentation. Moreover, there
can be data corrections (e.g. getting higher precision, getting
the delayed data from the sensor or satellite) forming two-
dimensional space for the temporality not only validity is
monitored, by transaction correctness, as well. If the data do
not fit the originally associated block space, migration is
present. To reach complexity and performance, individual
object states are grouped together into the same neighbor
blocks simplifying the evaluation and loading perspectives.
The aim is to optimize physical block architecture and
infrastructure, reflected by the air transport system usage, by
which the proper and accurate data retrieval process must be
ensured.

This paper is structured as follows. Chapter 2 deals with
the temporal database definition forming state-of-the-art.
Chapter 3 deals with the table indexes as the core elements
ensuring the performance by effective block location. Chapter
4 focuses on fragmentation management, migration handling,
and block shrinking by proposing own techniques for
optimizing physical structure. Chapter 5 evaluates the impacts
of the block size by emphasizing the computational study and
performance impacts.

Performance evaluation for the block size impact
identification using the temporal environment has been
performed in Oracle Database 19c Enterprise Edition
(Release 19.0.0.0.0 Production) system. Server parameters
are: processing unit: Intel Xeon E5620; 2,4GHz (8 cores),
operation memory: 48GB, SSD drive: 1 000GB.

A spatio-temporal data locating and identifying airplane
objects by the occurrence time, and GPS position was used,
delimited by the speed, destination, current airspace
association (entry and exit time), planned route vs. current
route, as well as the weather conditions influencing the flight.
There were 20 attributes, enclosed by the validity time frame.
The data set consists of 1 808 390 data tuples in total.
Examples of the data are in fig. 1:

Fig. 1. Solution Shrinking space module architecture

II. TEMPORAL DATABASES

Temporal databases arizes from the conventional
principles by extending the state definition by the Date and
Time borders, mostly defining the validity. Generally, there
are three principles related to the granularity levels object,
attribute, and group granularity.

In object-oriented granularity, the whole state is extended
by the validity frame. Thus, if any change occurs, a

completely new state image of the object is created. As a
consequence, any state identification is straightforward and
can be obtained easily taking the validity range. On the other
hand, there can be severe limitations related to storage
capacity. Therefore, to ensure performance, it is necessary to
synchronize changes, otherwise, many duplicate values are
present, and identification of real change can be complicated
and demanding [1] [3]. The opposite solution is delimited by
the attribute granularity extending each data value (attribute)
by a Date and Time reflection. The complex state itself is then
composed of individual attribute states [7]. The interlayer is
defined by the synchronization groups processing not only
attributes separately but they can be grouped if the change
occurs at the same time [7]. The synchronization group is
applied dynamically and is also temporal. It provides the
universal solution, even conventional attributes with no time
perspective can be covered. From the definition point of
view, the table can be static (no changes can be present),
conventional (data are not monitored over time), or temporal.
The architecture consists of the Group detector, Group
manager, and Synchronization layer responsible for the group
forming and dynamic drops. Data themselves are part of three
layers reflecting the validity current valid states, non-actual
data (future and historical), operated by the temporal
management [7]. For the evaluation study, group granularity
is used. Data are provided from the air transport systems and
sensors.

Fig. 2 shows the architecture of the group-level temporal
system. Data flow is taken to the temporal management layer,
interconnected with current and inactual data representations.
Future and historical data are attribute-oriented, current valid
states use object granularity. The reason is based on the
possibility of using conventional applications and their
interconnection to the temporal architecture, whereas they
just require current valid states in object granularity to form
the result set. Besides the main temporal management, data
synchronization is continuously monitored by the Group
detector layer. If the group is detected, the Group manager
creates new synchronization by notifying the
Synchronization layer. The whole activity is supervised by
temporal management, which stores the synchronization
groups in a temporal architecture, as well.

Fig. 2. Temporal database architecture

III. RETRIEVAL & INDEXING

The SQL language is a non-procedural language by
specifying the data to be obtained with no step-by-step user
construction. The evaluation and result set composition is the

responsibility of the database system manager. The database
system itself is formed by the instance consisting of the
memory structures and background processes and the
database delimited by the physical file storage, either in the
local server or Cloud environment. A physical database is
represented by the storage, covering data files. They are block
oriented with a fixed size. To get the data from the database,
relevant data blocks must be identified and transferred into the
memory for consecutive evaluation. Thus, the smallest data
portion to be operated is a block itself. However, data blocks
are not created and associated separately, due to the high costs
of the operation. Therefore, each table is formed by the
extents, from the physical perspective. In fact, the extent is an
array of data blocks (using a linked list), physically allocated
in the continuous disc space. Thus, each block is part of the
extent, which are interconnected forming a linear linked list.
The table is formed by the specification and delimited by the
data segment. It takes a chain of extents associated with the
table (fig. 3). The last block of the table is pointed by the High
Water Mark (HWM). Thus, by scanning the blocks
sequentially, the upper limit is reflected just by the HWM.
During the processing, fragmentation occurs as a consequence
of the block and tuple size, updates, and deletes of the states.
The main problem is just the empty block, which is loaded
into the memory Buffer cache for evaluation during the
sequential scanning. Such an operation is named the Table
Access Full (TAF) method.

Fig. 3. Structure definition segment, extent, and block structures [5]

When dealing with data retrieval, evaluation and relevant
data extraction passing all the conditions is a staged process.
Fig. 4 shows the data retrieval process by parsing the query
and selecting the best suitable access path followed by
providing the row sources and building the result set.

The TAF method is characterized by sequential data block
scanning. There is no option to identify the fill ratio of the
blocks, nor to detect completely empty blocks. Instead, each
block content is sequentially copied to the memory Buffer
cache for evaluation using I/O operation [5] [6]. Buffer cache
memory structure is formed as a matrix of the blocks, which
can be empty (newer used or directly prepared for the
loading), clean (hold data, which can be, however, directly
rewritten, whereas they do not hold any extra data difference
in comparison with the database storage reflection) or dirty
(locked blocks, which hold new data, which must be stored in
the database before rewriting and consecutive processing) [6].
Thus, for the TAF, memory space for the loading must be
identified, followed by the I/O operations, which are time and
resource-consuming.

Fig. 4. Data retrieval process definition [5]

 Another option for data source identification is based on
using indexes. An index is an optional structure associated
with the table, which can be used for the data location by using
the index key, which must be compatible with the query.
There are many types of indexes (B+tree, bitmap, hash
indexes, clusters, etc.) with various enhancements (reverse,
compression, function-based, virtual column indexing, etc.)
[2] [4] [8]. The default strategy used in an object-relational
database environment is associated with the B+tree consisting
of the root nodes, and internal nodes by traversing using the
index keys and leaf nodes referencing the data using the
ROWID pointers. ROWID address is a direct data locator
formed by 10 bytes, consisting of the identifier of the data file,
particular data block, and position of the row inside it. Thus,
it is the fastest access to the data. For data retrieval, the index
can have significant performance impacts. Firstly, the
traversing index is far faster in comparison with sequential
loading and scanning. Namely, there is no non-relevant block
loading necessity. Secondly, the leaf node of the index
provides a direct address, so the accessibility is
straightforward. Thirdly, the index is rather wide than deep, so
the amount of data path in the index is strictly limited. Note,
that despite the fact, ROWID points to the data position inside
the block, the loading operation always refers to the block
itself, thus, always, the whole block is loaded.

 Index definition and usage can have many negative aspects
to be highlighted. The index must cover the current situation.
Therefore, it must be updated during the Insert, Update or
Delete operations increasing the time processing demands of
such operations. The second problem is related to the
undefined (NULL) values, which cannot be mathematically
compared and are not part of the index. Finally, there is a
limitation caused by the data migrations, by which the state
after the change does not fit the original data block and must
be shifted to another free one. The consequence is associated
with the existing index set, which does not cover the change,
and the leaf layer ROWID address still points to the original
block, where the data are not located. Instead, there is just
another pointer present there, forcing the system to load a
different block. In general, such a row chaining can be deep
resulting in performance degradation. In [7], the solution is
based on the ROWlog layer replacing physical ROWID
addresses with logical pointers in a separate layer. Multiple
indexes can reference that layer used as a physical mapper.
Therefore, migration is limited by creating new references in
the additional layer done only once for all indexes. Other
solutions described in [9] [10] are related to the undefined
value coverage by the index delimited by the specific
extension, which does not use the original index key, but the
unique row identification is used (either delimited by the
physical address, primary key or hash value can be used).

 These techniques and approaches form state of art by
emphasizing data retrieval and limiting migrated rows. Next

section deals with the proposed contribution dealing with the
de-fragmentation and space shrinking, focusing on the block
size impacts.

IV. FRAGMENTATION, SHRINKING

Before introducing our own methods and contribution,
let's reflect on the physical block management during the
Insert and Update operation. A user defines a statement to be
processed. After parsing, and checking privileges, integrity,
and all the constraints, the row is to be stored physically in
the database, formed by the extents and blocks associated
with the table, with HWM as an upper limit. Thus, the task is
to locate the appropriately suitable block. Over history, four
approaches can be identified. The oldest and simplest
solution was based on block set traversing, loading, and
evaluating, whether it can cover a new row or not [5] [11].
That technique was too demanding in dynamic systems,
reducing the parallelism. Thus, it can be, generally, said, that
the Insert and Update operation was enclosed by the Select
statement providing a suitable block. The scanning was done
sequentially. By reaching the HWM, it was evident, that a
new extent must be allocated. The first-fit method was used
to extend the problem of fragmentation even a small tuple
can be mapped to large block space.

The second solution removed the scanning and a new
tuple was always stored in a new block. From the storage
perspective, each tuple was stored in a separate block using
1:1 mapping, which negatively impacted the storage
demands. Although the block size was reduced, such an
approach was confusing and quickly rejected [12].

The third and fourth solutions are based on free space
block categorization into sets. The first category covers the
blocks, which are filled from 0 to 25% of the capacity. The
second category ranges from 25% to 50%, the third delimits
the range from 50% to 75%, and finally, the last category
deals with ranging from 75% to 100%. The difference
between solutions 3 and 4 is based on the data information
repository, which can be in the data dictionary or part of the
object structure segment. Based on [5], the data dictionary
forms the bottleneck due to the high workload and locking,
so the best suitable solution is operated by table segment
categorization.

The algorithm is based on getting the size of the row to be
processed, followed by identifying the best suitable block
based on the categorization. Thanks to that, the best suitable
blocks are used as a priority to reduce fragmentation. That
profile, however, results in one very important consequence.
Since the filling of the block is optimized, free or too thinly
filled blocks are present, but cannot be identified, and are no
further processed in the current solution. The proposed
solution uses a fulness ratio and usability prediction soon
based on the change flow frequency.

A. Proposed solutions tuple management

Categorization of block usage is a relevant strategy to
minimize fragmentation. Empty (or almost free) blocks are
then used only if others cannot serve and cover them.
Therefore, such blocks must be identified to exclude them
from the TAF processing. SOLUTION 1 is based on
extending the categorization strategy by dividing the first
category reflecting the empty blocks with no tuples. It forces
the system to use 5 categories. The total storage demands are

extended by 0.1% for the whole segment, irrespective of the
number of extents. On the other hand, the TAF method can
significantly benefit by lowering I/O operations. Fig. 5 shows
the impacts of the TAF method related to the free block ratio.
The X-axis represents the percentage of the free blocks and
the percentage of the time processing demands cuts. The Y-
axis delimits the scenarios. It represents an almost linear
dependence type. If the ratio of empty blocks is more than
28%, the results are almost the same. It is because the loading
necessity is limited, which is one of the most demanding
operations during the processing.

Fig. 5. Data retrieval highlighting empty blocks ratio using TAF

SOLUTION 2 is based on using tuple count
categorization instead of block fill ratio. By using such an
approach, empty blocks can be very easily identified. On the
other hand, it brought additional demands for the Insert and
Update operation, whereas the count itself does not relate to
the tuple size. And if the structure of the tuple was dynamic
from a size perspective, even a block with one tuple cannot
hold additional rows, whereas the original one fits almost the
whole block.

Therefore, SOLUTION 3 extends it by marking
usability. Once the block is loaded for the potential new tuple
assigning, it can be marked as full by excluding it from
further evaluation. This mark is then automatically
reevaluated during any change on the block. Fig. 5 shows the
results expressing processing time costs for loading 10,
1 000, and 1 000 000 rows to the existing structure dealing
with 10 000 000 rows. It takes the original solution
categorizing the block fill ratio and solutions 2 and 3. It is
expressed in the percentage. The reference model
(SOLUTION REF) is the existing approach used by default
currently. The aim of the proposed solutions is the maximum
number of tuples covered by the block, compared to the
existing approach maximizing the full rate. By the diversity
of the data structures and tuple types, such a difference can
have significant consequences.

Reflecting the reached outputs, pure tuple count
(SOLUTION 2) does not bring additional power, whereas the
size of the tuple is not emphasized, thus the large tuples are
preferred to map a new row, but the size demands cannot
cover it. On the other hand, SOLUTION 3 uses marking by
limiting such a negative aspect. As evident from the results,
it more properly points to block optimization. Namely, for the
evaluation, if the block holds more data, there is a natural
assumption, that the probability it holds particular data is
increased.

Fig. 6. Data retrieval highlighting empty blocks ratio using TAF

When dealing with the tuple count, the crucial task is to
identify the number of covered rows. In principle, if the new
structure is created, any operation can change the assigned
value. Tuple count is associated with each data block and can
be located in a data dictionary, separate structure, or part of
the block itself. The data dictionary does not provide
sufficient power due to the locking forming the bottleneck.
Locating the tuple count directly inside the block is irrelevant,
to obtain such a value, it would be necessary to load it into
the memory, so the benefit is removed. The specific structure
is the most relevant, which can be sorted based on suitability
using a linear linked list or B+tree (key index value is tuple
count). Fig. 7 shows the results. It takes tuple count definition
during the Insert statement to identify a suitable data block.
In the first phase, the tuple block is taken, then the selection
is made based on the block fill to ensure coverage. The
reference model is extracting tuple count into a separate
structure organized randomly. Data dictionary (is limited by
the locking and parallelism) and block management (is
limited by the I/O operations to get the value) reach almost
the same results. The best solution is based on the B+tree
lowering the demands up to 40%. By applying the extended
fill block management, migrated rows are limited, resulting
in lowering the processing time demands by 49%.

Fig. 7 shows the performance drop related to various
architectures dealing with the tuple count for the block.

Fig. 7. Performance of the Insert statement using tuple count architecture

B. Proposed solutions rescanning

In the preceding system, there was an assumption, that
tuple management is added to the empty system. Thus, there
are no extents initially and each extent to be allocated is
initialized by getting a zero value for each block (tuple

count). However, how to apply the rules, if the tuple count
management needs to be implemented on an existing system,
by which the table is formed to multiple extents? How to
calculate tuple count values without sequential block loading
into the memory, whereas such activity would be too
demanding from the time processing, as well as storage
demands? The Buffer cache structure should be, there,
emphasized, which is a destination for the block during the
loading and evaluation. First, a free block must be identified
there, if there is no one, loading hangs, during which some
blocks from the Buffer cache are swapped into the disc, so
the number of I/O is increased. Therefore, it is important to
find another way to get the tuple count by minimizing I/O
operations and Buffer cache usage.

Our proposed solution for the existing system arises from
the Master indexing, which was first defined in 2017 [7]. One
of the table indexes covering all the data (NULL values are
not part of the index) is marked as Master and is used in case
there is no suitable index for the evaluation. Instead of using
the TAF method, the Master index is used as a data locator.
It optimizes access by limiting fragmentation and empty
block loading. In the proposed solution, it is used for
calculating tuple count by evaluating ticks for the block
inside the index. Namely, the Master index is always smaller
in comparison with the whole tuple, so the number of blocks
is reduced. Moreover, the index structure is better optimized
from the storage perspective and consecutive loading.
Finally, the Master index is often used during the data
retrieval, so it is at least partially pre-loaded into the Buffer
cache. Such blocks can be directly used without I/O operation
necessity (loading).

The algorithm for the tuple count calculation for the
existing system starts with the Master index location. If it
exists, it is used for the calculation by using the block-hit
ratio. If the Master index is not defined for the table, then the
system evaluates existing indexes based on the size, pre-
loading, and assumed usage to select one of them to be
declared as Master. The only condition is that it covers all the
data tuples to ensure tuple count consistency. Using the
Master index, tuple count calculation can be done.

In case there is no index for the table there is no primary
key, nor secondary indexes present, tuple count is just
assumed using the current statistics, block number, and row
count. Such an estimate can have, however, significant
performance impacts, if the size of the rows varies
dynamically for the particular table.

C. Shrinking space and index impacts

Free space categorization and tuple count management
are useful for the data change operation, mostly reflected by
the Insert statement. Update operation can be considered as a
Delete operation followed by the Insert statement, typically
placed to the same data block, if possible. Database systems
do not shrink space across the data blocks automatically due
to several reasons [5]. First, it is assumed, that such free
blocks will be used soon, therefore there is no pressure for the
structure optimization, where it would be valid only
temporarily, and later, new extent allocation would be
demanding. Moreover, data blocks cannot be deallocated
separately, the management granularity is always the whole
extent (formed by several data blocks). Finally, data blocks

are pointed by the indexes, thus the shrinking would cause
migrated row problems [11].

On the other hand, there are many occasions, where the
structure optimization would be beneficial after the data
archiving [5], moving to the data warehouse, lake, or mart
[12], or after the reconsolidation [9], where blocks are free or
by fixing the data structure and content [13]. By these means,
if the blocks repository is not optimized, additional blocks
must be loaded with no relevant content during the TAF
method. Similarly, index access techniques could be
degraded by the migrated rows.

Our proposed technique dealing with the shrinking space
arises from the logical ROWID management by mapping the
logical definition part of the index into physical pointers [5].
The original approach takes a new migration pointer, thus,
after the block loading, data are not present in that particular
block. Our proposed solution references the migration
mapper layer by replacing the data pointer to the new block,
where the data are moved. Thanks to that, the original block
is freed, and removed from the evaluation, whereas no data
are there. And mostly, existing indexes reference a new
position after the processing, thus there is no migration
present. Fig. 7 shows the proposed solution. Each index is
connected to the migration mapper, extended by the shrinking
space module, consisting of the blocks and their real size. By
shrinking the space (operated by the Shrinker background
process), the Migration mapper is reflected, covering only
one Update operation, compared to the common migration,
which must dereference each block separately. Fig. 8 also
shows the data flow and block interconnection.

Fig. 8. Solution Shrinking space module architecture

V. BLOCK SIZE IMPACTS

The database is formed by the files holding the data. Each
data file is formed by blocks, in which the data resist. System
instance is formed by the memory structures and background
processes. The interlayer between them is the tablespace
characterizing the physical infrastructure files, blocks, etc.
Each database system must contain at least one tablespace
(like SYSAUX and SYSTEM tablespaces in DBS Oracle). The
aim is to group data files with the same characteristics
together based on the application domain. One of the
significant parameters is just the block size, which is then
mapped to the Buffer cache extension DB_cache. If the
block size is not specified explicitly for a tablespace, the
default value is used, set for the whole database. Such a value
can be obtained by referencing the db_block_size parameter,
the default value is 8kB and can range from 2kB to 32kB.
show parameter db_block_size

NAME TYPE VALUE
------------------------------- --------------------- ------------
db_block_size integer 8192

The proper value of the database block set can have
various consequences, like contention reduction, reduced row
chaining (if the row cannot fit one block), faster scans, and
lowering the number of loading [5] [6] [7].

The size of the block for the tablespace can be set using
the blocksize clause:

create tablespace <tablespace_name>

 datafile <location_and_name>

 blocksize {2 | 4 | 8 | 16 | 32}K;

However, before creating a tablespace with a non-default
block value, the DB_cache memory structure for a particular
block size matrix must be allocated, using the following
command:

alter system

 set db_{2 | 4 | 8 | 16 | 32}k_cache_size=<value> {M | G};

The evaluation study analyzed CPU costs (absolute
values) and processing time (in [mi:ss:ff]). It highlights the
demands for the table structure separately, and extended
solution with a primary key index with various block sizes.
Tab. 1 shows the results of taking 30% fragmentation by
getting 10 000 rows. It takes an almost uniform definition.
With the rise of the block size, I/O operations and waiting
times are lowered. It shows, that the main aspect of the data
retrieval processing is associated with memory loading and
evaluation.

TABLE I. RESULTS IMPACT OF BLOCK SIZE TO TABLE STRUCTURE

Block size Costs Processing time
2KB 12378K 06:27:01
4KB 6275K 03:55:35
8KB 3327K 01:58:92
16KB 1689K 01:01:77
32KB 912K 00:34:53

Fig. 9. Results table size block => costs

Block migration reduction benefits from 5%
fragmentation. Fig. 10 shows the results stating the original
performance and solution dealing with the proposed technique
of migration reduction using logical block addresses and
mappers. Although the original solution uses migration

pointers, it is always necessary to load a particular block and
then, reference the pointed block. It uses 8KB block for
processing. The results highlight CPU costs related to the
fragmentation ratio.

Fig. 10. Results fragmentation impacts => costs

VI. CONCLUSIONS

The data amount to be handled is still rising by
emphasizing efficiency and overall performance. To ensure
proper decision-making, temporal databases are used, dealing
not only with the current valid data but also with historical
states and future valid tuples are present.

This paper summarizes temporal architectures pointing to
the granularity levels of the object, attribute, and
synchronization group. Performance evaluation study takes
spatio-temporal architecture of the synchronization group,
dealing with the air traffic.

It emphasizes the physical database layer and
infrastructure by pointing to the block size in terms of size,
memory loading, as well as fill ratio, fragmentation, and
shrinking.

Namely, tuple management has been discussed by listing
the empty blocks excluded from the evaluation stream. The
storage demands are extended by 0.1%. The fill ratio
procedure is covered by another proposed solution, however,
as discussed and evaluated, it does not bring a robust solution,
whereas the tuple size can be dynamic. Thus, rather tuple
count coverage by the block is preferred, lowering the
performance demands of the retrieval to 90.3%.

The complexity of the proposed architecture highlights
the data migration, by which the original index ROWID does
not precisely locate the block with particular data and
shrinking space module. In that architecture, each extent is
rescanned by pointing to the empty blocks, and grouping
them by the linked list array.

The second part of the paper deals with the block size
demands. As evident from the results, total costs are almost
linear reflecting the block size definition (30% data
fragmentation is present). The main advantage is based on the
fragmentation limitation, which is lowered with the rise of the
block size. The default 8KB block requires 01.58:92 for the
processing, while 2KB requires 06:27:01 and 32KB denotes
00:34:53. Thus, it is almost linear. On the other hand, if the
block size increases, more memory space is also required for
mapping. Therefore, the best solution is to use various block
size levels, based on the data types and tuple structure.

In future research, we would like to evaluate the impact
of tablespace definitions related to physical storage and data
distribution to create a complex methodology of performance

evaluation in the temporal environment. There is an
assumption the various environment and distribution
characteristics can bring additional power by parallelizing the
process of the retrieval by pointing to the migration mapper
located in separate disc storage.

ACKNOWLEDGMENT

This publication was realized with support of Operational
Program Integrated Infrastructure 2014 - 2020 of the project:
Intelligent operating and processing systems for UAVs, code ITMS
313011V422, co-financed by the European Regional Development
Fund.

It was partially supported by the Erasmus+ projects:

 Project number: 2022-1-SK01-KA220-HED-000089149,
Project title: Including EVERyone in GREEN Data
Analysis.

 Project number: 2020-1-HR01-KA226-HE-094713, Project
title: Cloud cOmputing for Digital Education Innovation.

 Project number: 2021-1-SI01-KA220-HED-000032218,
Project title: Better Employability for Everyone with APEX.

REFERENCES
[1] J. Delplanque, A. Etien, N. Anquetil, and O. Auverlot, Relational

database schema evolution: An industrial case study, IEEE
International Conference on Software Maintenance and Evolution,
ICSME 2018, Spain, 2018, pp. 635-644

[2] A. , J. , and E. Vesel, Optimization design for
parallel coloring of a set of graphs in the High-Performance
Computing Proceedings of 2019 IEEE 15th International Scientific
Conference on Informatics. pp 93-99. ISBN 978-1-7281-3178-8.

[3]

Proceedings of 2020 IEEE International Conference on Artificial
Intelligence and Computer Applications, ICAICA 2020. 1277 1279
(2020). https://doi.org/10.1109/ICAICA50127.2020.9182496

[4]
relational index
Conference on Scientific and Statistical Database Management, 2003

[5] D. Kuhn and T. Kyte, Expert Oracle Database Architecture:
Techniques and Solutions for High Performance and Producitivity.
2021, ISBN 9781484274989

[6] D. Kuhn and T. Kyte, Oracle Database Transactions and Locking
Revealed. Oracle Database Transactions and Locking Revealed.
(2021). https://doi.org/10.1007/978-1-4842-6425-6

[7] M. Kvet Managing, locating and evaluating undefined values in
relational databases . 2020

[8]

Analysis and Machine Intelligence, vol. 7, 2021, pp. 1-25.

[9] -Index

Transactions on Human-Machine Systems. (2022).
https://doi.org/10.1109/THMS.2021.3133807

[10]
13th International Conference on Frontiers of Information Technology
(FIT), 2015.

[11] -Memory on
Active Data Guard: Real-
IEEE 36th International Conference on Data Engineering (ICDE), 20-
24 April 2020

[12] O. Rolik, K. Ulianytska, M. Khmeliuk, V. Khmeliuk, U. Kolomiiets,

225 (2022).
https://doi.org/10.1109/ATIT54053.2021.9678605

[13] W. Steingartner, J. Eged, D. Radakovic, V. Novitzka Some
innovations of teaching the course on Data structures and algorithms
In 15th International Scientific Conference on Informatics, 2019.

[14] Threat Defense: Cyber Deception
Approach and Education for Resilience in Hybrid Threats Model
Symmetry-Basel, Volume 13, Issue 4, 2021.

