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ABSTRACT It is not uncommon for people to face phishing attempts on a daily basis, usually via email
containing a malicious URL pointing towards a phishing landing page. In recent years, numerous studies
have been conducted using machine-learning techniques to detect phishing webpages. These techniques
require real-world data from which they extract underlying distinctive patterns that are not easily visible
to humans. Capturing and collating such data plays a fundamental role in the overall process. Supervised
machine learning algorithms rely on accurate and balanced data for training. Despite the proliferation of
research in this field, comparing different studies is a common challenge due to varying data sources,
transformations and data cleansing techniques applied when preparing the training dataset. This paper
presents a framework for creating a comprehensive and balanced dataset for training machine learning
models detecting phishing webpages. The framework covers the process of identifying and gathering
the data - phishing and legitimate, data cleansing and highlights important considerations related to the
structural composition of the final dataset, like the ratio between phishing and legitimate records or optimal
dataset size. Though there is no universal way of preparing a balanced and efficient dataset, the proposed
framework provides comprehensive guidelines for constructing one, addressing aspects specific to phishing
detection. The practical benefits of applying the framework are accurate, non-skewed, and balanced data,
which lead to an accurate model and transparency of data transformation, enabling comparability of the
results between different studies.

INDEX TERMS phishing, framework, dataset design

I. INTRODUCTION

AFTER almost thirty years of its presence - since the
use of the first automated phishing script in 1995 to

steal access to America Online (AOL) accounts or collect
credit card details that were further used to register new users
[1] - phishing became a commonly known term, with six
out of ten people familiar with its meaning [2]. During this
time, phishing expanded from emails on computer screens
to mobile phones, smart TVs, and other media channels
via which it’s being spread and also fought against through
awareness campaigns. The most common distribution chan-
nels are depicted in Fig. 1 within green-colored stage 1⃝
- short message service (SMS), email, voice call, social
networks and quick response (QR) code. As per [3], in 2020,
75% of organizations observed at least one email phishing
attempt, 60% at least one SMS phishing attempt, 59% at least
one phishing attack via social networks, and 53% recorded at
least one vishing attempt.

After this initial stage, which leverages one of the de-
scribed channels, a phishing attack usually moves to the next

stage, which is handled by a phishing landing page (Fig. 1,
red-colored stage 2⃝). The three distinctive webpage types
represent the three most common phishing webpage objec-
tives. The first is the webpage collecting credentials (e.g.,
by imitating well-known brands such as Netflix, local banks,
or parcel delivery companies). The second is a webpage
collecting details of payment cards (or Bitcoin wallets). The
third is a webpage hosting malware or malicious files (or
zero-day exploits) that are supposed to infect the victim’s
device. The second phase is critical as if the victim doesn’t
recognize the phishing and continues, the third stage occurs.
The third stage is the post-attack phase, where the attacker
has collected intended details or infected the victim’s device.
This stage (Fig. 1 blue-colored stage 3⃝) most commonly
results in financial loss for the victim, but depending on the
objective of the attacker, it could also be theft of valuable
intellectual property, and/or potentially a reputation loss.

As phishing techniques have evolved from simple email
scams to sophisticated schemes that target various digital
platforms, becoming the most prevalent type of cybercrime
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FIGURE 1. Stages of the phishing attacks .

[4], the necessity for precise and adaptable phishing detection
mechanisms has intensified across various industries. Partic-
ularly vulnerable are sectors that have not historically been
the focus of phishing, such as healthcare and logistics, includ-
ing Intelligent Transportation Systems (ITS). ITS integrates
communication, control, and information processing across
transportation networks, where the integrity and availability
of data are paramount. These systems directly influence traf-
fic management and safety measures and are crucial to pre-
venting the paralysis of vital transportation flows. Enhancing
phishing detection is thus essential not only for securing ITS
against cyber manipulations but also for protecting against
data breaches analogous to traditional phishing attacks aimed
at personal and financial data theft.

In the early days, when phishing was conducted primarily
through emails, deploying an email filter to eliminate most
phishing attacks was practical and efficient. With the spread
of social networks and instant messaging platforms, which
have also become available on smartphones, game consoles,
and smart TVs, efficiently monitoring all potential threat
vectors has become more challenging. However, email is still
the most commonly used channel, and conscious design of
phishing email content can positively impact phishing attack
efficacy; for example, a phishing email promising a picture
of a pretty girl was twice as efficient as a tech support email
related to database crash [5]. The susceptibility to phishing
worsens when the attacker employs a more focused approach
by picking specific targets (spear phishing). Such an attack
is conducted by targeting the potential victim with more
personalized content (ratio of employees who fell victim to
such attacks went up to ≈60% from usual 5% click-ratio of
mass phishing attack [6])2. On a positive note - a systematic
and prolonged approach to awareness training can signif-

icantly reduce the susceptibility, e.g., from a baseline(no
prior awareness training) ratio of 33.2% (one out of three
employees would click on a phishing link) to only 5.4%
(approximately one out of nineteen would fall victim) [7].

Though awareness plays an important part in phishing
prevention, various techniques are being used to mitigate the
risk of phishing on the technical side. This area has gained
much attention recently from researchers and commercial
companies trying to find the most efficient way to detect
and block phishing attacks. Phishing can take many forms
based on the objective of the attacker (credentials harvesting,
financial theft, extortion, etc.). Some attacks can leverage
email with a malicious file attached; others can be spread
through an SMS with a shortened Uniform Resource Locator
(URL) link pointing to the public cloud with the infected file
as a target, and others might be a direct link to a webpage
utilizing zero-day exploit and deploying file-less malware.
The most common form of phishing is a message containing
a URL link to a phishing webpage as depicted in Fig. 1, red-
colored stage 2⃝. The diagram shows how a solution that can
accurately classify phishing webpages can mitigate the risk
of phishing irrespective of the channel used to deliver the
message.

The earliest techniques applied to help with phishing de-
tection were blacklists [8], [9]. Blacklists are relatively easy
to implement but have limited efficacy as they can capture
only re-used domains. Analysis of 10 years of phishing do-
mains data (2013-2022) shows that the share of re-occurring
phishing webpages is gradually decreasing - from 21.5% in
2013 to only 6.9% in 2022 [10]. Though blacklists might
have been relatively successful in the past, their efficacy is
gradually decreasing. Another crucial aspect of blacklists is
the need for an additional technique that accurately classifies
the visited webpages as confirmed phishing or legitimate
webpages, when the domain hasn’t been found among the
blacklist records. Based on the result of the classification -
the webpage is added to the blacklist or ignored in case it’s
not phishing (alternatively can be added to the whitelist to
reduce false-positive alerts in the future).

The most widely researched techniques in detecting phish-
ing webpages are machine learning algorithms - specifically
predictive analytics algorithms. These are trained using real-
world data with relevant characteristics and a binary identifier
distinguishing phishing occurrences from legitimate web-
pages. The most commonly used are the ones well suited for
classification tasks like logistic regression algorithms, deci-
sion trees, and support vector machines (SVM). Especially
fitting is SVM due to its high accuracy and its ability to work
with high-dimensional data [11]. Accurate and commonly
used are also algorithms of artificial neural networks. The ac-
curacy of these techniques depends heavily on the accuracy,
quality, and comprehensiveness of the data used to train the
model.

Hundreds of articles and conference papers have been
published (between 2010 and 2017, more than 700 research
papers related to phishing detection were available, while
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the growth trend was clearly recognizable [12]). Despite this
high number, it is challenging, if not impossible, to compare
the results of one study with another. There are various
reasons, but the main ones observed are the insufficient
level of detail about the source of data (many times, the
details about gathering the legitimate records are insufficient
or missing) used by these studies or the lack of details
related to data transformation and cleansing before using
machine learning techniques [13]. Studies often overlook
the importance of describing the data collection process and
the adjustments performed, which are crucial to validate or
compare the results between various researchers. There are
publicly available datasets that can be used:

• Sahingoz et al. (2019) [14] - dataset contains 36400
legitimate URLs collected from Yandex Search appli-
cation programming interface (API) and 37175 phish-
ing URLs collected from PhishTank, though the period
during which the data were collected is not provided
(probably from 2017)

• Lee et al. (2020) [15] - dataset contains 110090 le-
gitimate URLs from the top 300000 Alexa URLs and
32159 phishing pages from PhishTank collected over
the period from May till July 2019

• Vrbančič et al.(2020) [16] - dataset contains 58000
records of legitimate pages collected from Alexa and
30647 phishing records collected from PhishTank. The
period during which the data were collected is not
provided, and the dataset doesn’t contain the original
URLs but only the derived 111 features.

• Marchal et al. (2014) [17] - dataset contains 48009
legitimate URLs collected from the Open Directory
Project (DMOZ) and 48009 phishing URLs collected
from PhishTank during the period from October to
November 2012.

• El-Sayed M. El-Alfy (2017) [18], [19] - dataset con-
tains 4898 legitimate URLs collected from Google,
Yahoo, and 6157 phishing URLs from PhishTank,
MillerSmiles, and other sources. The data collection
period is not clear, and the URL is not present in the
dataset; only the derived features and a flag indicating
whether the record belongs to a phishing or legitimate
webpage are present.

• Choon Lin Tan (2018) [20] - dataset contains 5000
legitimate records sourced from Alexa and Common
Crawl and 5000 phishing records from PhishTank and
OpenPhish. Data were collected between May and June
2017, but original URLs are not present in the data; only
the derived features are present.

• Yasin et al. (2023) [21] - dataset claims to contain
190000 records of phishing URLs collected from Phish-
Tank, but we found only 88084 records. Data are divided
into three Excel files: the first file contains 9068 records
from May 2013, the second file contains 53668 records
from December 2013 to February 2014, and the third
file contains 25348 records from March and April 2015.

Data doesn’t contain any legitimate URLs.

Only a few of the above-mentioned datasets work with the
more recent data [15], [16]. And though these can be used for
research and academic purposes, they are not sufficient to be
used for actual real-world applications, which require even
more up-to-date data.

This paper describes a proposed framework for preparing
new datasets or validating existing ones for a particular use
case. The paper summarizes important stages in designing
and creating a dataset for training a predictive analytics
model to distinguish phishing from legitimate webpages. In
more detail, the framework

• lists all steps relevant to the collection and preparation
of data

• discusses various considerations important to creating a
comprehensive and balanced dataset

• provides guidelines and best practices to mitigate com-
mon mistakes

II. PHISHING DATASET DESIGN FRAMEWORK
Building a single universal phishing dataset that could be
used for any machine learning scenario in predictive analytics
is impossible in the same way as providing granular yet
sufficiently generic steps needed to create a balanced and
accurate dataset. Many (if not all) aspects of the dataset
will depend on the particular scenario for which the dataset
would be used. Particular use cases will impact the expected
size of the dataset, the content and the granularity within
the dataset, sensitivity to the period from which the data are
collected, the length of this period, data cleansing, and data
transformation steps required before training the model, etc.
Though the weight or importance of a particular area might
differ from one use case to another, the proposed framework
provides generic steps that should be considered concerning
the specifics of the given use case. The first question to
answer is the source of the phishing data.

A. PHISHING DATA FEEDS
Though the decision about a relevant data source and the
required extent for gathering phishing data depends on the
intended use case, the minimum data to collect is the list of
phishing URLs. For datasets for which the URL (components
of the URL in Fig. 2) of the phishing webpage will suffice,
phishing data can be gathered from a relevant data source for
the desired period without any special considerations. There
are already attempts to use artificially generated phishing
URLs, but the authors themselves stated a limitation of
variation of artificially generated URLs [22]. If the dataset
requires characteristics beyond the phishing URL - for ex-
ample, features derived from the hypertext markup language
(HTML) content of the phishing webpage - the collection
process will be different as it is vital also to consider the short
lifespan of phishing pages.

Availability of the phishing webpage drops quickly; by
≈10% (from 64.9% to 55.8%) within the first five minutes
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FIGURE 2. Structure and components of the URL

after being reported [23]. After 24 hours ≈34% [24], or in
more recent analysis ≈41% [23] of pages are still active and
only ≈25% [25] or ≈20% [23] of webpages are still active
after 12 days. While the mean lifespan value is measured
in days due to the few long-lasting phishing webpages, the
median value is measured in hours. A ≈10 hours value was
reported in [23], [26], meaning that only half of the reported
phishing webpages were active after this period. Therefore,
gathering the data related to the phishing webpage as soon as
possible is desirable. This creates a constraint on the relevant
source for phishing data, which has to provide reported
phishing in real-time or near real-time, and the data collection
solution has to be able to capture the required details as soon
as they are reported.

Viable and most commonly used data sources are Phish-
Tank (phishtank.org), PhishStats (phishtats.info), and Open-
Phish (openphish.com).

PhishTank - The most widely used source of phishing
data (in [12] PhishTank was used in 25 out of 45 evaluated
research papers, while the second most used data source was
used in 6 papers, which shows how often the researchers are
leveraging Phishtank) that has been available for many years
(since 2005). PhishTank provides data in a format in which
the users report them. Registered users can participate in the
manual review process of reported suspicious URLs and help
classify them as confirmed phishing or legitimate webpage.
Each reported phishing has to be evaluated at a minimum by
two people. The positive aspect of the manual classification
approach is the highest possible classification accuracy. The
negative side is a non-negligible volume of reported URLs
that remain without the final classification (in Table 1, daily
volume of suspicious webpages in PhishTank is ≈700, but
these are only records classified as confirmed phishing; the
actual overall reported volume is ≈1150 records).

PhishStats - started in 2014, though the archive data go
back to 2009. PhishStats receives the highest daily volume
of reported phishing pages from all three selected data
sources. PhishStats also provides the most comprehensive
number of characteristics for each reported URL, though
many characteristics are missing, and the actual details of
how the characteristics are derived are not explained. In
[10], we performed an overlap analysis between PhishTank
and PhishStats. While initially, PhishStats contained almost
all reported URLs from PhishTank, PhishStats (since 2017)
contains a lot of unique records that are not present in
PhishTank (approx 40% of PhishStats phishing URLs are
unique), which would point towards the preference of using

PhishStats to PhishTank.
OpenPhish - started in 2014 and is a free service providing

a continuously updated feed of phishing URLs. Free service
provides only basic information consisting of three columns
- reported URL, targeted brand, and time when the URL was
reported. There is an option to upgrade to a paid subscription,
which provides more detailed information. In [27], the re-
searcher performed an overlap analysis but focused primarily
on which site had the URL captured sooner. No comprehen-
sive analysis of the data overlap has been published.

TABLE 1. Comparison of selected phishing data websites

PhishTank PhishStats OpenPhish

Real-time interface Web scrapping API Web scrapping
Batch interface API API -
Archive Accessible Accessible Inaccessible
Available features *** ***** *
Daily volume1 ≈700 ≈2600 ≈1000
1 Daily volumes are calculated using year 2023 data.

1) Phishing feeds overlap analysis
Phishing webpages can be reported via various channels, and
the same suspicious URL can be shared or reported to various
phishing lists, which causes data overlap between these data
sources. We analyzed the overlap between PhishTank, Phish-
Stats, and OpenPhish, which can help decide the preferred
data source.
For all three data sources, we analyzed complete 2023 year
data and followed the same approach described in [10]. We
divided one year of data into monthly parts and compared
each month-part while using only the first five levels of the
domain part of the URL. Match was found if all five domain
levels (Fig. 2) matched in the given month. The results of
overlap analysis between the selected data sources show that
the highest ratio of unique records has OpenPhish (Fig. 3).
And though the PhishStats has the highest daily volume, only
18% of records are unique; the remaining 82% can also be
found in PhishTank or OpenPhish.

When deciding which data source provided the suspicious
records earlier, we used only the overlapping data across
all datasets. The results were that PhishTank presented the
earliest data, and after approximately ≈3 hours, the records
were available in PhishStats. Then, after ≈20 hours, the
records showed up in OpenPhish (hours are derived from me-
dian hours difference). The above analysis provides details
to decide which phishing data source best fits the intended
use case. As there is no clear visibility into how these data
feeds(PhishTank, PhishStats, and OpenPhish) source their
phishing data, it is advisable to use as many data sources as
possible to get the most versatile and comprehensive phishing
data.

2) Phishing data de-duplication
Phishing page URLs can be reported to multiple phishing
lists, but they can also be reported to the same phishing feed

4 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3. Overlap between data from OpenPhish, PhishStats and
PhishTank .

multiple times by various users. Therefore, one of the initial
mandatory steps should be a deduplication process (unless
our use case requires duplicate data to be present). This step
ensures that the weight of the same reported phishing attack
in the final dataset is not multiplied or increased due to the
repeated presence of the record in the data [28].

De-duplication can be performed in various ways. We
apply deduplication on the records that have all five domain
levels of the "Authority" component the same (Fig. 2). The
threshold of five levels was derived from empirical analysis
of 10 years of data in [10], which represented more than 95%
of all records.

B. FEATURES AND CHARACTERISTICS
Phishing raw data, as described in the previous section, are
the input to the next step, which encompasses the process of
creating and deriving various relevant phishing characteris-
tics, which can be grouped based on the source from which
they are derived:

• URL-based features are derived from URL compo-
nents (Fig. 2). Commonly used features within this
group are the length of the URL, subdomain levels,
scheme, presence of special characters indicating a po-
tential obfuscation, IP address instead of domain name,
etc.

• HTML-based features are derived from the content of
the phishing webpage. Derived features can be linked
to the page’s visible content - text, images, links, or
invisible parts like meta tags, presence of HTML form,
scripts, hidden objects, redirect commands, favicon,
page title, etc.

• Externally-linked features are derived using external
data providers (free or paid) that can be linked to the do-
main, registrar, or hosting IP. Additional data commonly
used to enrich the dataset are various domain reputation
sites, search index ratings, etc.

Detailed description and calculation logic of the thirty com-
mon features representing all three groups is presented in
[19]. These characteristics have to provide a distinction be-
tween legitimate and phishing webpages. If certain char-
acteristics are the same or very similar for phishing and
a legitimate webpage, such characteristics won’t be useful
in the model training. The primary focus of this step is to
identify and create characteristics that reflect the difference
between legitimate and phishing web pages.

C. LEGITIMATE PAGES DATA
Phishing pages, though on the rise, constitute only a fraction
of the 359 million domains across all top-level domains
[29]. There are many ways to gather a sufficient volume
of legitimate (non-phishing) webpages, but there are a few
considerations to remember. To train a predictive model, it is
required to provide actual phishing data and equally relevant
non-phishing data. In the research papers, we often see
repeated instances of gathering the data from the following
sources:

• DMOZ (dmoz.org) - also known as Open Directory
project owned by AOL and maintained by a community
of volunteers (Fig. 4). The web directory site used a hier-
archical structure to organize site listings into categories
and subcategories. AOL closed the project in 2017;
since then, there have been only archived old versions of
the database. DMOZ is often used as it contains URLs
from across diverse industries and countries, though
the language prevalence is skewed with mostly English
and European languages [30]. DMOZ was a relevant
resource while it was maintained, though the URLs
rarely contained the path and query part, which would
practically limit the applicable use cases.

FIGURE 4. DMOZ Homepage in 2013; (dmoz.org) .
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• Alexa 1M (alexa.com/topsites) - was a list of 1 million
domains ranked by the traffic data collected via Alexa
toolbar and other traffic data sources. The list was often
used as a reputation ranking database or whitelist. The
limitation of this list was that it contained only regis-
tered domain names (second-level domain SLD and top-
level domain TLD components; Fig. 2), which limited
its usefulness for deriving features based on the URL
characteristics. Alexa 1M list was discontinued in May
2022, but similar alternative lists like "Majestic Million"
or "Umbrella 1 Million" from Cisco exist.

• Yahoo (yahoo.com) - another common source of URLs
with legitimate webpages as it maintained its "Yahoo
Directory" - a hierarchically organized database of links
grouped into categories similar to DMOZ. Yahoo also
provided another function that returned a random URL
from its directory. Both of the Yahoo functions were
discontinued in December 2014.

• Common Crawl (commoncrawl.org)- is a humongous
web archive collected by automated crawlers containing
billions of URLs spanning across millions of domains.
This is still maintained and available.

As web technologies(new frameworks, script libraries, etc.)
and web practices mature and change over time, so do legit-
imate web pages. There are many ways to collect relevant
non-phishing data; consider your particular use case and
ensure that the non-phishing data you use aligns with the
phishing data (e.g., don’t combine recent phishing data with
historical non-phishing data or vice versa). Also, ensure that
the granularity and structure of the data are the same (e.g.,
URL with all components vs. URL with only registrable
domain name).

Last but not least, aspects like phishing webpage language,
age of the data, and representation of various industries
should be considered. Phishing is a form of social engi-
neering attack and, as such, relies on the impersonation of
reputable brands. If your non-phishing data does not contain
the records from common industries used by the phishing,
such a model will underperform in the real-world setup.
The same logic applies to particular parts of the websites.
Phishing often uses login pages for various services (banks,
entertainment, social networks, etc.). Ensure that your le-
gitimate data contains not only the default landing page of
the brand but also the login page. So that the algorithm can
extract and capture the difference between the phishing lure
webpage and the legitimate login page of a reputable service.
These dataset enrichment techniques are described in [31],
where the researcher adds sets of specific webpages to ensure
the dataset is balanced and represents the common phishing
targets. The same approach can be seen in [32], where the
dataset was intentionally infused with data of online payment
service providers as one of the most common targets of
phishing. An analysis of targeted industries and their share
within the overall phishing landscape can be found in Anti-
Phishing Working Group (APWG) reports [26].

D. SIZE OF THE DATASET

As stated in the [31], machine learning models detect more
phishing pages when provided with more patterns (meaning
increasing the absolute - number of records and relative -
ratio of the phishing pages in the dataset). The important
term here is - pattern - not records or observations. Since
the predictive model will correlate the observed patterns
and their prevalence with a particular class - phishing or
not, it makes sense to provide the algorithm with as many
patterns as possible and in sufficient numbers to mirror their
commonality in the real world. Factors impacting dataset size
are:

• Validation and testing - training and validation datasets
have to be sufficiently sized to be representative (consid-
ering the planned ratio of phishing vs. non-phishing data
during the model training stage)

• Machine learning algorithm - Different predictive al-
gorithms have varying data requirements. Algorithms
like neural networks can efficiently ingest and also usu-
ally use larger datasets for effective training compared
to, e.g., decision trees, which can partition the space and
train the model on smaller datasets.

• Data diversity - dataset should represent various types
of phishing attacks, whereas more diversity usually re-
quires more data to cover variable phishing techniques
and tactics.

• Data dimensionality - The number of features
(columns) can influence the required number of records;
more features often require more data samples to accu-
rately model the prevalence of values for all the features
and their relationships.

• Data availability - this is extremely relevant for par-
ticular sub-classes of phishing (like spear phishing or
phishing against specific uncommon types of industries,
or when we plan to do comparative analysis further back
to the past, etc.) where the availability of legitimate and
phishing examples also constrains size. Real-world data
availability might limit the dataset size.

Among the researchers are those who use a few hundred
records for each class [33], those who use a bit more than a
thousand records [32], those who use a few thousand [34],
and then a few who use tens of thousands of records [14].
Using a few hundred or thousand records might not be suffi-
cient, especially considering the above-mentioned aspects. It
is possible to conduct a simple exercise that starts training
the model with the smaller size of the data and gradually
increases and observes the change in the KPIs (True-Positive
Ratio, False-Positive Ratio, Accuracy, Balanced accuracy, F-
1 score, etc.). You should observe decreasing gains as the
data volume is increased to the point where no further data
increase will positively impact the results. The bigger the
dataset, the better the detection outcome, as stated in [13],
is not necessarily always true. The more representative the
dataset, the more comprehensive the features collected and
the better the detection performance [35].
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1) Experimental evaluation of dataset size, dimensionality,
and algorithm on model accuracy

Analysis was conducted using a dataset with 58000 records
of legitimate webpages and 30647 phishing webpages [16].
The dataset contains a column indicating whether the record
is phishing or a legitimate webpage and another 111 derived
features which can be grouped into the following areas:

• 19 features based on URL - e.g. number of various
characters within complete URL like dot, hyphen, at
sign, hash sign, percent sign, length of URL, etc.

• 21 features based on domain - e.g. number of various
characters within domain part of URL like dot, hyphen,
at sign, hash sign, percent sign, length of domain, do-
main as IP, etc.

• 18 features based on the directory - e.g., number of
various characters within the directory part within path
component like dot, hyphen, at sign, hash sign, percent
sign, directory length, etc.

• 18 features based on the file - e.g. number of various
characters within file part within path component like
dot, hyphen, at sign, hash sign, percent sign, directory
length, etc.

• 20 features based on the parameters - e.g. number of
various characters within file part within query and
fragment component like dot, hyphen, at sign, hash sign,
percent sign, parameters length, tld present flag, etc.

• 15 features from external sources - e.g. ASN IP, days
since domain activation, Number of resolved IPs, num-
ber of redirects, URL shortener flag, etc.

We separated a validation dataset of 10000 records from the
original dataset while keeping the phishing and legitimate
records ratio. The remaining data were used to train the
model using various training dataset sizes. In the first step,
we evaluated model accuracy by using a training dataset of
size from 1% to 10% of the size of the dataset. At the same
time, we evaluated the model accuracy with respect to the
dimensionality of the data. We created 3 variants based on
the number of features within the training dataset - the first
variant with 10 features, the second with 40 features, and the
final with all 111 features (Fig. 5, blue colored area).

Finally, we did this experiment for the following three
algorithms:

1) Logistic Regression
2) Decision Tree
3) Support Vector Machine

After evaluating the 1 to 10% range, we also evaluated the
models using training data of size from 10% to 100% of the
dataset. For this scenario, we used all 111 features available
in the dataset (Fig. 5, purple colored area).

Each trained model was validated against the same train-
ing dataset, and the resulting KPIs were captured. Since
the dataset was slightly skewed (the ratio of phishing vs.
legitimate webpages was approximately 1:1.9 we decided to
use a balanced accuracy measure (1) as the main qualitative

measure.

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(1)

A confusion matrix summarizes the performance of various
decision-making processes or models by showing the counts
of true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) classifications. It is a tool used for
evaluating the accuracy and effectiveness of a classification
algorithm. In our current scenario, these figures represent:
TP - number of correctly classified phishing webpages
(phishing classified as phishing)
FP - number of legitimate webpages incorrectly classified as
phishing
TN - number of correctly classified legitimate webpages
(legitimate classified as legitimate)
FN - number of phishing webpages incorrectly classified as
legitimate webpages

For every configuration of the trained model, we calculated
10 variants with randomly selected training data from the
training dataset while keeping the same size. Therefore, we
also measured the standard deviation of balanced accuracy of
these 10 model versions.

Analysis findings - the results of the experiments are
available in Table 2 for the Logistic regression model, in
Table 3 for the Decision Tree model, and in Table 4 for the
Support Vector Machine model. In the results, we observed
the positive impact of the size, especially within the size
between 1% and 4% of dataset size. Gradual improvements
across all three models, as well as across all feature variants,
can be observed. In the range between 5% and 10%, we ob-
serve mixed results, where only the Decision tree algorithm
is gradually improving. At the same time, the remaining two
models slightly deteriorate, though we observe the improve-
ment of standard deviation figures. Comparing the results for
the even bigger training data yields similar findings: only the
Decision Tree algorithm improves with additional records
within the training dataset. The remaining two models are
stagnant, though the standard deviation figures are reduced.
This observation confirms that adding more data beyond a
certain point might be impractical and sometimes even coun-
terproductive. The analysis of the impact of dimensionality
is rather straightforward. We see that an increased number of
features brought incremental gain for accuracy and reduction
of standard deviation, though the added features must be
relevant and bear at least some unique characteristics com-
plementing the other features. It is also important to note that
some algorithms are more sensitive to higher dimensionality
(e.g., Support Vector Machine compared to the other two al-
gorithms) and might result in increased training time needed,
even to the point that would not be practical.
Via the experiments, we also confirmed that more features
might require a bigger dataset, which is visible when we
compare the best result achieved with the dataset with only 10
features, with the best result achieved for the dataset having
all 111 features. While the dataset with the smallest number
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FIGURE 5. Steps of analysis of dataset size and dimensionality impact on model accuracy .

of features achieved its best result with the dataset of 4% size,
the full dataset with 111 features achieved the best results
with the 9%-10% sized dataset. This also confirms a logical
assumption that a dataset with more features would require
more data observations to provide samples for all relevant
combinations of these features.

E. STRUCTURE OF THE DATASET
The previous section stated that having more patterns avail-
able within the training data allows the trained model to
approximate the underlying correlations better and, therefore,
be more accurate when classifying new records. The structure
of the data also impacts the variability of the patterns. The
structure of the data means understanding the share of indus-
tries targeted by phishing, as some are more prevalent than
others. It also means looking at the language of the phishing
targets. If our planned use case revolves around domain
structure, aligning with the distribution of top-level domains
and representation of domains from various registrars would
be relevant. But this is not an exhaustive list of relevant
dataset structure considerations - just the most common ones.

1) Ratio between the phishing and legitimate records

We would get a hugely imbalanced dataset if we collected
all the URLs on the web and could identify all the phishing
pages among these URLs. The ratio between legitimate and
phishing web pages could easily be 1:1000 or even more.
Therefore, what should the ratio between phishing and non-
phishing pages in the dataset be? Researchers have asked
the same question in [36], and they decided to train the
data on a balanced dataset, but evaluation and testing were
performed on an imbalanced dataset. In general, it is advised
to construct and train the model on a balanced dataset so
that the algorithm can have an equal chance to extract the

characteristics of phishing pages and those legitimate. The
balanced dataset was also used in [14], [34].

In [31], researchers performed an analysis where they
calculated the True-Positive Rate (TPR) and False-Positive
Rate (FPR) for various ratios of phishing records in the
dataset. The result of this analysis was that the TPR grew
gradually from 93% to 98% for 10% to 50% and stayed
almost the same for 60% and 70% ratio of phishing records in
the dataset, but at the same time, the FPR grew from 0.5% to
1.25% from 10% share to 50% share and continued to grow
to 2% for 70%.

Researchers in [33] performed a test with two different
ratios of legitimate vs. phishing - 60:40 and 82:18. The
outcome was that the PhiDMA algorithm performed with
higher accuracy on more skewed data. But since Accuracy as
a qualitative measure doesn’t perform well with skewed data,
we also calculated balanced accuracy, which also performed
slightly better for a more skewed ratio of 82:18 (95.63% vs.
92.36%).

Experimental evaluation of ratio between legitimate
and phishing records on the accuracy of selected models
Analysis was conducted using the same dataset described in
the previous section [16]. We separated 10K records from the
dataset used as a validation dataset. We created a balanced
dataset from the remaining data containing 30K legitimate
and 30K phishing records. This dataset of 60K records was
used as a pool from which we derived the training dataset
used to train the models. All three models were trained on
top of the freshly created dataset with 30K records while
varying the ratios of legitimate and phishing records - starting
with 90% legitimate and 10% phishing and gradually moving
towards 10% legitimate and 90% phishing. We used the
smallest number of features - first 10 - and gathered the
model’s mean balanced accuracy figures - similar to the
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TABLE 2. Performance Metrics Across Training Data Sizes and Feature Counts - Logistic Regression

Data size 10 Features 40 Features 111 Features

% Obs Mean Std Mean Std Mean Std

1.0% 786 0.846 0.0431 0.856 0.0374 0.912 0.0299
2.0% 1573 0.855 0.0311 0.867 0.0314 0.919 0.0199
3.0% 2359 0.859 0.0153 0.874 0.0156 0.929 0.0220
4.0% 3146 0.862 0.0145 0.878 0.0209 0.932 0.0140
5.0% 3932 0.857 0.0204 0.875 0.0184 0.926 0.0153
6.0% 4719 0.856 0.0157 0.874 0.0157 0.927 0.0144
7.0% 5505 0.856 0.0149 0.874 0.0121 0.928 0.0127
8.0% 6292 0.859 0.0128 0.878 0.0135 0.931 0.0099
9.0% 7078 0.857 0.0126 0.878 0.0125 0.934 0.0124
10.0% 7865 0.855 0.0109 0.877 0.0121 0.932 0.0128

Data size 111 Features

% Obs Mean Std

10% 7865 0.932 0.0128
20% 15729 0.929 0.0078
30% 23594 0.928 0.0054
40% 31459 0.928 0.0044
50% 39324 0.928 0.0036
60% 47188 0.928 0.0027
70% 55053 0.928 0.0034
80% 62918 0.929 0.0037
90% 70782 0.928 0.0033
100% 78647 0.929 0.0026

Notes: Summary of Logistic Regression algorithm performance - mean value and standard deviation - across different
training data sizes and feature counts. The color gradient within the results columns indicates value ranges for easier
comparison - from red (less favorable) to green (more favorable).

TABLE 3. Performance Metrics Across Training Data Sizes and Feature Counts - Decision Tree

Data size 10 Features 40 Features 111 Features

% Obs Mean Std Mean Std Mean Std

1.0% 786 0.861 0.0336 0.849 0.0345 0.910 0.0307
2.0% 1573 0.872 0.0284 0.873 0.0193 0.909 0.0198
3.0% 2359 0.881 0.0198 0.877 0.0183 0.922 0.0171
4.0% 3146 0.881 0.0185 0.887 0.0162 0.929 0.0159
5.0% 3932 0.881 0.0254 0.879 0.0225 0.921 0.0190
6.0% 4719 0.876 0.0204 0.887 0.0207 0.922 0.0117
7.0% 5505 0.880 0.0191 0.881 0.0221 0.924 0.0154
8.0% 6292 0.885 0.0149 0.885 0.0121 0.924 0.0101
9.0% 7078 0.890 0.0113 0.887 0.0148 0.929 0.0098
10.0% 7865 0.886 0.0092 0.891 0.0116 0.929 0.0134

Data size 111 Features

% Obs Mean Std

10% 7865 0.929 0.0134
20% 15729 0.932 0.0051
30% 23594 0.935 0.0061
40% 31459 0.941 0.0053
50% 39324 0.943 0.0034
60% 47188 0.944 0.0025
70% 55053 0.946 0.0027
80% 62918 0.947 0.0030
90% 70782 0.947 0.0028
100% 78647 0.950 0.0028

Notes: Summary of Decision Tree algorithm performance - mean value and standard deviation - across different
training data sizes and feature counts. The color gradient within the results columns indicates value ranges for easier
comparison - from red (less favorable) to green (more favorable).

previous analysis.
Analysis findings - the results of the experiments are avail-
able in Table 5 for the Logistic regression model, in Table 6
for the Decision Tree model, and in Table 7 for the Support
Vector Machine model. In the results, we observed the best
results around the balanced ratio only for the Decision Tree
model. In the results, we can also observe that the number
of phishing records in the dataset results in very similar
balanced accuracy figures across various sizes of datasets
and ratios of phishing records. For regression and SVM, the
results show that a higher ratio of phishing records posi-
tively impacts the balanced accuracy of the trained model.
While for 10 features, we observed in the first analysis that
the model didn’t improve further beyond the 3000 records
dataset (this dataset had a ratio of phishing vs. legitimate
records 1:1.9) and balanced accuracy 0.862, in the second
experiment with varying ratios, we achieved even higher
balanced accuracy as we moved to the higher ratio of phish-
ing records within the dataset across all dataset sizes. The
same results were achieved for SVM. Training models with
a balanced dataset helps pay equal attention to all classes but
may cause the model to focus too much on random variations
(noise) within those classes. On the other hand, using an
imbalanced dataset could result in not learning enough about

the less common class. Yet, it might lead to a simpler model
that works better overall, particularly if the more common
class reflects the general trends in the data. This analysis
shows that experimenting with the ratios of classes might
result in higher accuracy and, therefore, should be part of the
model training phase.

2) Phishing by industry

Cybercriminals don’t target all industries equally. They tend
to focus on some businesses more than others. A summary
of the share of phishing by industry can be seen in Ta-
ble 8. This analysis was conducted on quarterly reports from
APWG (similar to [26]) for the last five years. As can be
seen, over the years, phishing against certain industries has
dropped(Saas/Webmail), while for others, it has increased
significantly (social media, logistics, shipping). The most
consistent and high figures are linked to companies in the
finance domain (Financial institutions and Payments).

If the phishing data in the dataset were collected from
multiple sources or a single source with sufficient market
coverage and during a long enough period, phishing records
would have a similar distribution of impacted industries.
Ensure that the creation of training and validation datasets
contains a sufficient sample of the phishing attack against
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TABLE 4. Performance Metrics Across Training Data Sizes and Feature Counts - SVM

Data size 10 Features 40 Features 111 Features

% Obs Mean Std Mean Std Mean Std

1.0% 786 0.836 0.0487 0.861 0.0390 0.901 0.0381
2.0% 1573 0.854 0.0315 0.864 0.0307 0.919 0.0213
3.0% 2359 0.858 0.0149 0.871 0.0140 0.929 0.0216
4.0% 3146 0.864 0.0138 0.877 0.0197 0.929 0.0130
5.0% 3932 0.859 0.0210 0.872 0.0212 0.926 0.0145
6.0% 4719 0.857 0.0160 0.870 0.0179 0.925 0.0134
7.0% 5505 0.856 0.0162 0.871 0.0139 0.930 0.0142
8.0% 6292 0.857 0.0137 0.874 0.0113 0.931 0.0112
9.0% 7078 0.857 0.0138 0.874 0.0128 0.934 0.0113
10.0% 7865 0.854 0.0118 0.872 0.0145 0.932 0.0121

Data size 111 Features

% Obs Mean Std

10% 7865 0.932 0.0121
20% 15729 0.930 0.0080
30% 23594 0.929 0.0052
40% 31459 0.929 0.0048
50% 39324 0.929 0.0036
60% 47188 0.928 0.0025
70% 55053 0.929 0.0034
80% 62918 0.929 0.0038
90% 70782 0.929 0.0031
100% 78647 0.929 0.0028

Notes: Summary of Support Vector Machine algorithm performance - mean value and standard deviation - across
different training data sizes and feature counts. The color gradient within the results columns indicates value ranges
for easier comparison - from red (less favorable) to green (more favorable).

TABLE 5. Performance Metrics Across Training Data Sizes and Ratios - Logistic Regression

Training Data Size Ratio of phishing and legitimate records within training dataset

% obs 10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20 90:10

10% 7865 0.767 0.781 0.836 0.847 0.857 0.888 0.891 0.895 0.896
20% 15729 0.750 0.784 0.842 0.848 0.855 0.876 0.890 0.890 0.881
30% 23594 0.755 0.788 0.842 0.852 0.855 0.879 0.883 0.887 0.893
40% 31459 0.761 0.794 0.841 0.852 0.855 0.877 0.890 0.887 0.885
50% 39324 0.754 0.792 0.841 0.855 0.852 0.875 0.891 0.889 0.892
60% 47188 0.749 0.789 0.840 0.852 0.854 0.881 0.891 0.887 0.895
70% 55053 0.751 0.792 0.844 0.850 0.856 0.878 0.888 0.892 0.888
80% 62918 0.746 0.789 0.840 0.850 0.856 0.877 0.886 0.888 0.893
90% 70782 0.754 0.787 0.844 0.852 0.855 0.878 0.888 0.888 0.889
100% 78647 0.755 0.788 0.841 0.852 0.857 0.878 0.888 0.888 0.891

Notes: Summary of the mean value of balanced accuracy across different training data sizes
(rows) and ratios (columns). The color gradient within the results rows indicates value ranges
for easier comparison - from red (lower accuracy) to green (higher accuracy). Each model was
validated using 10000 records with the ratio of phishing:legitimate 1:1.9 and first 10 features.

TABLE 6. Performance Metrics Across Training Data Sizes and Ratios - Decision Tree

Training Data Size Ratio of phishing and legitimate records within training dataset

% obs 10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20 90:10

10% 7865 0.749 0.833 0.874 0.888 0.893 0.888 0.886 0.892 0.894
20% 15729 0.765 0.824 0.881 0.884 0.885 0.892 0.890 0.882 0.886
30% 23594 0.752 0.837 0.865 0.888 0.897 0.892 0.893 0.890 0.894
40% 31459 0.766 0.838 0.869 0.891 0.894 0.891 0.893 0.886 0.886
50% 39324 0.765 0.836 0.872 0.893 0.895 0.894 0.895 0.888 0.890
60% 47188 0.775 0.834 0.871 0.895 0.894 0.895 0.892 0.896 0.894
70% 55053 0.779 0.835 0.888 0.892 0.895 0.896 0.893 0.893 0.888
80% 62918 0.776 0.837 0.873 0.895 0.896 0.896 0.896 0.889 0.887
90% 70782 0.779 0.837 0.887 0.897 0.897 0.896 0.896 0.893 0.889
100% 78647 0.784 0.833 0.873 0.895 0.896 0.895 0.892 0.893 0.891

Notes: Summary of the mean value of balanced accuracy across different training data sizes
(rows) and ratios (columns). The color gradient within the results rows indicates value ranges
for easier comparison - from red (lower accuracy) to green (higher accuracy). Each model was
validated using 10000 records with the ratio of phishing:legitimate 1:1.9 and first 10 features.
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TABLE 7. Performance Metrics Across Training Data Sizes and Ratios - Support Vector Machine

Training Data Size Ratio of phishing and legitimate records within training dataset

% obs 10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20 90:10

10% 7865 0.695 0.790 0.838 0.853 0.860 0.855 0.879 0.891 0.874
20% 15729 0.696 0.789 0.834 0.849 0.858 0.858 0.891 0.891 0.892
30% 23594 0.698 0.794 0.842 0.856 0.854 0.855 0.887 0.889 0.889
40% 31459 0.708 0.795 0.843 0.852 0.854 0.854 0.883 0.887 0.891
50% 39324 0.708 0.789 0.845 0.857 0.851 0.857 0.882 0.892 0.890
60% 47188 0.699 0.795 0.842 0.850 0.851 0.859 0.888 0.891 0.899
70% 55053 0.715 0.789 0.843 0.854 0.854 0.856 0.884 0.891 0.888
80% 62918 0.692 0.793 0.841 0.852 0.852 0.857 0.885 0.890 0.886
90% 70782 0.697 0.792 0.841 0.855 0.852 0.856 0.885 0.889 0.890
100% 78647 0.700 0.793 0.842 0.849 0.854 0.855 0.882 0.889 0.889

Notes: Summary of the mean value of balanced accuracy across different training data sizes
(rows) and ratios (columns). The color gradient within the results rows indicates value ranges
for easier comparison - from red (lower accuracy) to green (higher accuracy). Each model was
validated using 10000 records with the ratio of phishing:legitimate 1:1.9 and first 10 features.

TABLE 8. Average share of phishing per industry per Year

2019 2020 2021 2022 2023 Average*

SaaS/Webmail 34% 30% 19% 19% 18% 24.7%
Financial inst. 18% 20% 24% 25% 24% 22.0%
Other 14% 11% 10% 19% 11% 13.1%
Payment 22% 13% 9% 5% 6% 11.8%
Social Media 2% 11% 14% 12% 20% 11.2%
Retail/e-comm 4% 7% 12% 7% 5% 7.3%
Logistics/Shipping 1% 4% 5% 6% 7% 4.1%
Telecom 2% 1% 1% 2% 6% 2.3%
Crypto 0% 0% 5% 4% 2% 2.3%
Cloud/File Host 3% 2% 0% 0% 0% 0.2%
Gaming 0% 0% 0% 0% 2% 0.2%
Government 0% 0% 0% 0% 1% 0.1%
* The "Average" column is calculated as a mean value across all five years.

various industries. With the legitimate data, the distribution
of collected records doesn’t have to copy the distribution of
phishing pages as per Table 8, but since the phishing record
will, it is important to represent the legitimate pages from
the most targeted industries sufficiently. This will provide
pattern variability for the model to distinguish phishing from
legitimate pages of a given industry.

3) Other considerations

The above structural considerations are the most common
ones, but others might be relevant and depend on your partic-
ular use case. One such example might be URL shorteners.
Phishing records will most likely contain URL shorteners as
they are quite common, with occurrence between 0.2% and
0,7% [37]. So, out of each 1000 phishing records, there will
be between 2 and 7 phishing records with URL shorteners. If
the dataset contains only legitimate webpages with an actual
domain in the URL, whereas there will be phishing records
using shorteners, such structural imbalance could impact the
model’s accuracy as the model will only see phishing records
with URL shorteners.

An important consideration impacting the efficacy of the
phishing detection model is source data language variability.
Given phishing’s global reach, a dataset enriched with multi-

lingual content will strengthen the model’s ability to discern
phishing attempts across various languages, enhancing detec-
tion accuracy. Combining webpages in multiple languages
eliminates linguistic biases and assures robustness against
phishing strategies exploiting language-specific variations.

An example of how important it is to use the recent data for
training the model, which should be used in real-world de-
ployment, is the addition of new g-TLD domains (.dad, .phd,
.prof, .esq, .foo, .zip, .mov, .nexus) that happened in the first
half of 2023. The domain ".zip" captured the highest interest
of security researchers as it perfectly mimics the .zip archive
extension, which can be easily used for phishing purposes.
When we ran a search within the Phishtank and Phsihstats
records from 2023, we found already more than 40 unique
URLs with the new gTLDs reported as phishing (e.g., url.zip,
newdocument.zip, microsoft-office.zip, tax-return-2022.zip,
irsrefund.zip, etc.)

As seen above, it is important to consider other aspects
of the phishing dataset that could impact the results of our
particular use case.

4) Limitations of proposed methodology
One limitation of the proposed framework is its reliance on
available data sources, which might not capture the entirety
of phishing activities, especially those targeted at niche or
emerging industries. The same applies to phishing attacks,
which are extremely perishable and crafted for a narrowly fo-
cused target. Due to their rarity and generally low prevalence,
these might not show up among the reported phishing web
pages. While the framework emphasizes the importance of
feature selection, determining the most relevant and effective
features for phishing detection is challenging and can signif-
icantly impact model performance. Another point being dis-
cussed but still posing a challenge is balanced industry repre-
sentation in the dataset. Achieving a balanced representation
accurately reflecting the real-world distribution of phishing
attacks across industries is challenging. Furthermore, the
dynamic nature of phishing techniques, which continuously
evolve to bypass detection, challenges the relevance and
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effectiveness of the constructed dataset and, by extension, the
trained models.

III. CONCLUSION AND FUTURE WORK
The development and evaluation of a balanced and compre-
hensive dataset for phishing detection underscore the piv-
otal role of dataset composition in predictive model per-
formance. The research presents a systematic approach to
dataset construction, emphasizing the importance of diversity
in phishing data feeds, de-duplication, and incorporating
a broad spectrum of features and characteristics. Through
experimental analysis, it was demonstrated that increasing
the overall size of the dataset positively impacts the accuracy
only to a certain point beyond which the positive impact
diminishes or even reverses (e.g., gradual improvement of
balanced accuracy through increasing the size of training
dataset from ≈800 to ≈3000 records utilizing 10 features for
training across all three tested models). The same experiment
also demonstrated the positive impact of additional features
on the balanced accuracy figures (e.g., gradual improvement
of the balanced accuracy when increasing the number of
features from 10 to 40 and then further to 111 across all
three tested models). Training on imbalanced datasets might,
in certain use cases, positively impact the model’s accuracy
- as depicted in the second experimental analysis where
the algorithm of logistic regression and SVM improved the
balanced accuracy figure when we increased the ratio of
phishing records within the training dataset. The study fur-
ther highlights the varying phishing trends across different
industries, underscoring the need for datasets to mirror these
variations to train models capable of recognizing the most
prevalent industry-specific phishing attempts. The proposed
framework contributes to the field by providing insights into
dataset preparation that can substantially influence the accu-
racy and reliability of phishing detection models. This can
ultimately aid in developing more effective defenses against
phishing attacks and ease the comparability between various
types of research.

Future work could take multiple directions, such as ex-
amining additional algorithms (e.g., Neural Networks, Naive
Bayes, K-Nearest Neighbors) and evaluating these machine
learning algorithms’ accuracy figures to varying training
dataset compositions. Create a fresh phishing dataset as per
the framework and compare the experimental analysis results
presented in this research with those obtained from the newly
created dataset.
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