
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Data Analysis - Aggregate Function Performance
Michal Kvet

Department of Informatics
Žilinská unvierzita v Žiline, Fakulta riadenia a informatiky

Žilina, Slovakia
michal.kvet@uniza.sk

Abstract— Increasingly expanding data analytics brings the
need to store a large and structurally diverse amount of data.
Related to this is the design of analytical data structures and
performance optimization. Individual data are typically
aggregated in reports. The goal of this paper is to create
a methodology for using aggregation functions in analytical-
transactional SQL databases. We focus on the impact of the used
parameter format and values, as well as grant total calculation
technique with the aim of minimizing processing costs and time.

Keywords—environmental data processing, transport systems,
data analysis, aggregate functions, SQL, temporal databases

I. INTRODUCTION

In order to be able to make a qualified decision, it is
essential to surround yourself with data. Of course, it is
important that these data are correct, consistent and verified
[7]. There are a number of techniques, mainly at the level of
statistics and data characteristics, by means of which it is
possible to ensure the quality of the input data, which are
subsequently stored in the database. This process is typically
secured through transactions with 4 basic properties (ACID -
atomicity, consistency, isolation and durability). In the past,
transactional data focused on currently valid data and the
entire system was conventional. This meant that the currently
valid rows were overwritten in the event of a change and the
original values were not preserved [5]. They could only be
partially identified through transaction logs and archives,
which were quite difficult to search in. Moreover, they
contained only a limited number of data, specifically only
small portion of the the last changes. Also, there were many
control commands in these logs and therefore the processing
efficiency was slow and resource-demanding [6].

As stated, data are needed to ensure correct and qualified
decisions. Data-driven decision making is an inseparable part
of any intelligent information system. Such decisions are
supported by the past and reflect individual changes. They
bring a competitive advantage.

It is therefore obvious that we need to store not only
currently valid states, but also states valid in the past and also
plans of states valid in the future. This is the only way we get
a comprehensive view of the data, development of changes
and reflection [4] [5]. A prerequisite for data analytics are
temporal databases, which demarcate individual records with
time stamps. They are usually values expressing validity
forming a uni-temporal system (containing one time
dimension). If we add another temporal reflection, a bi-
temporal system is created, which is characterized precisely
by the extension of transactional temporal reflection. It offers
the possibility to store not only changes over time, but for each
change it is also possible to record possible corrections,
delayed data, etc. This system is mainly used in
communication systems, where delays or data value
corrections can occur. But at the same time, all values must be
stored in the entire time spectrum, since even in this way

incorrect values could be used for the calculation of reports,
analytics and aggregations. A typical example where bi-
temporal systems are used is transportation - obtaining values
from sensors, communication between vehicles and ad-hoc
networks between vehicles and the infrastructure itself [3].
Another example is depicted by the environmental data and
analyzing complex data images [2] [8] [9] [10].

Fig. 1 shows the concept of temporal databases from the
perspective of dimension processing. The conventional
system stores only currently valid states. The uni-temporal
model focuses on validity, while the multi-temporal system
provides a universal solution with the possibility of modeling
an unlimited amount of time dimensions. Note that all
dimensions are part of the data identifier itself, and thus one
object can be defined by several states, but these states must
be disjoint within time dimensions. Such a requirement can be
ensured either by the structural data model itself, or by triggers
– procedural language in general.

Fig. 1. Temporal data modeling [5]

Fig. 1 is based on the object-level temporal architecture,
where the entire record as such is bounded by validity. Thus,
if any change occurs, regardless of the individual attributes
and their values, a completely new image is created. It can
generate a significant amount of duplicates. Federated object-
level temporal model provides a partial solution, in which
individual attributes are categorized according to the
frequency of changes and the original table is divided into
federated partitions.

Attribute-oriented temporal approach [6] focuses on the
attributes, which are encapsulated separately by the temporal
spheres. Thus, valid states is created as a composition of
indivudula attributes valid at the defined timepoint.

A hybrid model was introduced in [5] and is based on
creating synchronization groups composed, restructured and
dropped dynamically.

Attribute and group-level temporal models are rather
logical, physically, several layers supervised by the
background processes are present to serve the management,
mapping and state composition [5]. Fig. 2 shows the group-
level temporal architecture as the most generalized solution. It
consists of multiple layers. The currently valid states are
stored in the first most uppermost layer. They are modeled at

the level of the objects. This concept is applied in most
temporal systems [1] so that it is possible to access the
currently valid states directly using the data connector, and
thus the existing conventional systems will not need structural
changes. Temporal layer, as a heart of the system is stored in
the second layer, responsible for providing historical data or
future plans, as well as reports and change monitoring.
Historical and future valid data references are present in the
third layer, formed in forms of table blocks. Last three layers
are responsible for synchronization group management,
composition, restructuralization, etc.

Fig. 2. Group level temporal model [5]

All these models are primarily intended for transaction-
oriented systems, which are served as a data source for the
analytical oriented architectures and repositories, however,
temporal systems can be easily applied in the analytics as the
dimensions, referencing multi-temporal architectures in a
general level.

When working with complex data and analytics, it is
necessary to aggregate data and solve complex calculations.
Morever, in the case of temporal systems, these calculations
are even enhanced by the time slots [1].

Aggregate functions return a single row as a result for each
defined group of rows. Thus, the number of produced rows
can be reduced. They commonly use Group By clause in the
Select statement to define the group for which the aggregate
function is calculated. Aggregate functions can be located in
the Select and Having clauses, just in case the condition needs
to be based on the aggregate function.

This paper provides a methodology of aggregate function
definition in terms of getting proper performance. Precisely,
most of the analytical systems do not rely on the performance
of the aggregate functions, they simply point to the produced
data. The impacts of the definition is part of this paper
contribution.

The paper is organized as follows: Section 2 deals with the
principles of aggregate functions. Section 3 points to the
parameters and mapping impacts.. Performance evaluation
study is in section 4. For the computational evaluation study,
Oracle Database is used, which provides the widest spectrum
of clauses and applicable functions. However, generally,
proposed methodology can be generally used in any relational

platform. Section 5 deals with the methodology provided as a
result summary of the performance evaluation present in
section 4.

II. AGGREGATE FUNCTIONS

Database systems offer bunch of embedded procedures
and functions, part of the database core, which are generally
available. Functions can be called inside the SQL statements,
if they pass some prerequisites, like returning only SQL
applicable data type, not impacting existing transactions, etc.
These functions can be categorized into several groups, like
numerical functions, conversion functions, date value
management functions, conditional functions and many more.
Most of them are single-row functions meaning, they are
applied separately for each row. Among from standard
functions (available through the STANDARD package) and
user-defined functions, aggregate and analytic functions are
used for the data analysis.

Aggregate functions return a single value for a group of
values, rather than on single rows. They take the group, as
specified in the Group by clause and calculate the output of
the data aggregation. In a query containing a GROUP BY
clause, the elements of the select list can be aggregate
functions, GROUP BY expressions, constants, or expressions
involving one of these. Oracle applies the aggregate functions
to each group of rows and returns a single result row for each
group. Applicable clauses for the aggregate functions are
Select and Having clause.

Most of the aggregate functions take a single argument
(parameter), which can be optionally enhanced by various
flags. The following statement calculates number of
occurences for each category specified in the Group by clause.
Asterisk symbol (*) refers to the row existence. In principle,
instead of asterisk, any NOT NULL attribute can be used,
getting the same results.

select A, count(*)
 from TAB
 group by A;

select A, count(nvl(B, 1))
 from TAB
 group by A;

III. AGGREGATE FUNCTION PARAMETERS

Typically, aggregate functions accept a single argument
(parameter), which can be expression, constant, attribute,
function-call reference or even asterisk delimiting the
processed data set itself. There are many variants, which
produce the same results, like count(*) and count(A), based on
assumption, there are inner joins only (or none) a A is
mandatory value column. However, the performance can
differ. This paper aims to evaluate those performance impacts,
mostly reflected by the processing time and costs and create a
methodology, how to optimize the performance.

To sharpen that, argument of the aggregate function can be
optionally enhanced by the additional keywords and routines,
like Distinct, Unique or All. Distinct and Unique keywords are
synonymous meaning, that before the processing, duplicate
values are removed and only distinct values are considered as
an argument expression. The default option is All, causing that
all values are considered, thus, including all duplicates.

Some aggregate functions can work with dynamic
windows using windoing_clause, analogous to the analytic

functions. However, impact of this clause is not performance
evaluated and will be part of future goals and research.

Complex statistics and data analytics is done using
aggregate functions, typical representations are Min, Max,
Sum, Avg, Count, Variance or Stddev.

Aggregate function is calculated for each group and
therefore, by their usage, result set cardinality is (can be)
reduced.

Furthermore, aggregate functions ignore indefine (NULL)
values. It consequences in producing NULL values as a result
of the aggregation, if the processed set is empty. In the
following example, the condition Where ensures that the
processed set contains no records:

Select sum(A)
 From TAB
 Where 1=2;
--> NULL

But this does not apply to the aggregation function count,

which in that case produces a value of 0.

Select count(*)
 From TAB
 Where 1=2;

Thus, even the aggregate function ignores NULL values,
output of the aggregate function is never empty:

Select count(null)
 From TAB
 Where 1=2;

The following performance study will therefore focus on
3 areas:

 Impact of various argument references in the aggregate
functions and relation to the processing demands.

 Impact of function calls inside the aggregate fucntion
pointing to storing results in a pre-mapping repository.

 Impact of analytics used in the Group by clause.

A. Argument reference impact

When dealing with the aggregate functions, there are many
options, how to reference the arguments. In general, it can
consist of constant, numerical expression, function calls or
asterisk, making the ability to create complex evaluation. For
the aggregate functions, however, it is recommended to make
the evaluation as easy as possible, because it commonly
relates to the large data set with many rows. To get the number
of rows applying the conditions, Count aggregate function, as
well as Sum can be used. Therefore, we introduce various
options providing the same results by studying the
performance impacts. In this part, following aggregate
functions are considered:

 Count(*), where asterisk defines the row existence.
 Count(A) taking any NOT NULL attribute. The

research focuses on the general attributes, attributes
part of the indexes and primary keys (creating indexes
automatically).

 Count(1) taking constant numerical value.
 Count('xxx') considering constant character string.
 Count(nvl(B,1)) referencing any attribute by

converting it to any real value. Please note, that the

stated value “1” is rather placeholder than a real
values and the format depends on the data type of the
associated attribute (B).

 Sum(1) - we can also process the number of records
using the Sum function, where each record will be
represented by the value 1.

Please note, that all the mentioned functions will be
considered as a aggregate function fashion, since they can also
represent analytical oriented approaches.

B. Function calls optimization using the result cache

Functions can be called one time, irrespective of the
parameters and returned values. The second option, in case the
function is called with the same parameters repeatedly
multiple times, is to save the results. And then, in case of
calling the given function again, the prepared outputs can be
just accessed. Of course, this requires that function to be
deterministic, specified explicitly in the function header. To
be applied, it cannot affect data, nor to modify the database
structure. However, when using analytical-oriented reporting
functions that calculate complex values, this requirement is
fully met. A function can be pre-fetched in a user-defined
structure or embedded memory Result cache can be used. The
limitation of the user activity is just related to the parameters
to be used, generally, resulting in storing parameters and
mapping in a pure textual form, making it hard to follow
function call using named notation [5].

Result cache substructure of the Shared Pool instance
memory was firstly introduced in Oracle Database 11g in
2007. It was primarily used for queries, which are executed
multiple times. In that case, results were stored in the memory.
In parallel, a security system was introduced, which ensures,
that if any update on the data was done, particular stored result
reference was invalidated. For the manual request the
statement should be cached, Select statement itself can be
extended by the following hint (/*+RESULT_CACHE*/),
stated directly after the Select keyword. Among that, cache
mode can be set on database or session level:

Alter {system | session} set RESULT_CACHE_MODE =

 {auto | manual | force};

Later, PL/SQL Result cache memory structure was
introduced, operated with the same session/database
parameter. It is applicable only to the functions.

C. Analyzing data with Rollup and Cube considerations

Over the decades, a tremendous increase of reporting,
complex analytics and queries could be seen in any area,
including environmental data and transport systems.
Analytical support is mostly based on the OLAP technology,
data warehouses, marts and their variants. Analysis is done
across multiple dimensions, however, individual groups
should be also evaluated together in a bulk. One of the key
concepts in decision support systems is "multi-dimensional
analysis" across all necessary combinations of dimensions,
like temporal, spatial, product, category, environment
impacts, etc.

A. Rollup

Rollup analytical extension enables a Select statement to
calculate multiple levels of subtotals across a specified group
of dimensions. It also calculates a grand total. It creates
subtotals which "roll up" from the most detailed level to a
grand total. Rollup takes an ordered list of grouping columns:

Group by Rollup(A,B,C) considers the following groups:
 A, B, C
 A, B
 A
 Grand total
Without the Rollup extension functionality, it would be

necessary to process the individual groups separately and then
union them into a common output. Besides, it should be
emphasized that each Select statement defined in this way
triggers a whole constellation of operations - from creating an
execution plan through selecting indexes, obtaining data, and
constructing result sets:

Select A, B, C, count(*)
 From TAB
 Group by A, B, C
UNION ALL
Select A, B, null, count(*)
 From TAB
 Group by A, B
UNION ALL
Select A, null, null, count(*)
 From TAB
 Group by A
UNION ALL
Select null, null, null, count(*)
 From TAB;

In the above example, three dimensions are considered.
For the simplicity, aggregate function Count is used. Notice,
that for dimension number N, particular table needs to be
evaluated N+1 times. In case of using complex queries,
significant additional processing demands can be identified.
Performance evaluation study points to the results.

B. Cube

Cube extension of the Group by clause produces cross-
dimensional reports. It takes all possible combinations. Thus,
if there are N dimensions, totally, 2N combinations would be
produced. Let the dimension set be (A, B, C), then the Cube
produces following categorical reports:

 A, B, C
 A, B
 B, C
 A, C
 A
 B
 C
 Grand total
This, in case of refusing Cube extension, eight statements

(23=8 statements, where 3 expresses number of dimensions)
would be necessary to be issued. However, by adding one
extra dimension, there would be 16 statements. To sharpen
that, if 10 dimensions would be present, 1024 statements
would be necessary to be launched.

Tab. 1 shows the correlation between the number of
dimensions, number of referenced statements using emulation
of the Rollup and Cubes, as well as reduction in percentage.

Graphical representation of the reduction factor for Rollup
and Cube is depicted in Fig. 3.

TABLE I. REDUCTION FACTOR REFERRING TO THE NUMBER OF
DIMENSIONS

Number of
processed
dimensions

Data
structure
access
emulating
Rollup

Reduction
of the data
access, if
Rollup is
used (in
percentage)

Data
structure
access
emulating
Cube

Reduction
of the data
access, if
Cube is
used (in
percentage)

1 2 50 2 50
2 3 66.6 4 75
3 4 75 8 87.5
4 5 80 16 93.8
5 6 83.3 32 96.9
10 11 90.9 1 024 99.9
20 21 95.2 1 048 576 99.9

Fig. 3. Reduction factor by using Rollup and Cube extensions

IV. PERFORMANCE EVALUATION STUDY

For the performance evaluation study, real data set of
flight monitoring was used, consisting of spatio-temporal
model holding airplane locations and Flight Information
Regions (FIR) in aviation assignment. It took planned and real
routes monitored during the whole operation – from flight
preparing, taxi, departure, flight itself, up to landing and
parking. Temporal attributes of the airplane assignment to the
particular FIR referred to the entry and exit time. The data set
consisted of 234 740 records in the European region during
2017 – 2020.

Environment for the evaluation study was defined by the
server with the following parameters:

 Operating system: Windows 11 Pro, 22H2
 Processor: AMD Ryzen 5 PRO 5650U with Radeon

Graphics, 2.30 GHz
 Memory: 2x 32 GB DDR-4, 3200MHz, CL20
 Disc storage: 2 TB, NVMe, read/write 3500 MB/s
 Oracle Database 23ai Free Release 23.0.0.0.0 –

Production Version 23.4.0.24.05
There are many reasons for selecting Oracle Database for

the evaluation. First, it is the most complex system, which
provides robust performance for the analytical queries.
Secondly, during the last years they brought significant
changes and new functionality, mainly in Oracle 21c and
Oracle 23ai versions. Finally, Oracle serves as an associate
partner of the EverGreen project. However, although the
evaluation study is performed on Oracle technologies and

platforms, the research results are generally applicable to any
type of database system and analytical-reporting repository.

A. Impact of aggregate function parameter type

The first experiment emphasizes impact various
parameters of the aggregate function and its impact of the
overall performance. the aim was to collect number of rows
for the individual groups. All the defined functions provide the
same results, however, as evident from Tab. 3, processing time
demands are not the same. In the query, all rows are processed
and categorized, taking the whole data set consisting of
234 740 rows.

At first glance, the results may seem strange. The best
results were achieved in the case of using a function, which
requires function processing, and a context switch between
SQL and PL/SQL environments. Compared to taking only
static numerical value (Count(1)), it achieves a saving of more
than 1 second, which reflects more than 7.5%. The point lies
in the processed value itself. The structure of the memory
Buffer cache is block-oriented, so a numerical value,
regardless of its size, requires the entire block. A NULL value
has no special memory requirements.

Some can feel that the term asterisk expresses the whole
meaning and thus all the attributes. However, as we can also
see from the results, that this is not the case, it only expresses
the existence of the record. So those results are also very good,
compared to the numeric NOT NULL attribute (A), reaching
more than 1.6 seconds (10.48%).

The difference between Sum(1) and Count(1) is minimal,
expressing less than 2.5%.

TABLE II. PERFORMANCE – PARAMETERS OF THE AGGREGATE
FUNCTIONS

Aggregate function Processing time [ss.ff]
Count(*) 13.993
Count(A) 15.631
Count(1) 14.074
Sum(1) 14.423
Count(nvl(null, 1) 13.012
Count(nvl(B, 1) 15.896

B. Impact of Result cache for calling functions

The second experiment points to the Result cache, limiting
the necessity to call the function multiple times. Instead,
results of the fucntions are stored in the memory as a mapper
between input parameters and provided result. In both types,
user defined function was used, attempting to replace an
undefined value by any real value. In case of using Result
cache defined in the function header, total demands were
16.811 seconds. Thus the impact Result cache management
was 1.272 seconds, which incorporates storing function
results, but also searching inside the structure using a function
call hash reference, From the performance point of view, the
total saving was 7.03%.

TABLE III. PERFORMANCE – IMPACT OF USING RESULT CACHE

Aggregate function Processing time [ss.ff]
User defined function 18.083
User defined function
+ Result cache

16.811

In this case it is important to mention that in our case the
function was marked explicitly to cache the values. If
automatic selection were selected, the selection of function

features would depend on how often the functions are called
compared to others in the pool. The results are shown in
Tab. 3.

C. Impact of using Rollup and Cube extensions

The last experiment was based on the Group by clause
extensions, which are preferably used in the data analytics
allowing to create subtotals and various group splitting. By
using Rollup and Cube, it is possible to dig deeper into data
by analyzing dimensions correlations and overall impacts,
organized in data warehouses and marts. The important
property is, that the data set is scanned only once, the groups
and dimension reflections are then processed and calculated
dynamically. The last column of Tab. 4 shows, that even
multiple Group by sections are used (delimited by using
Rollup and Cube), number of processed rows is still the same.
Futhermore, using Rollup or Cube extensions does not bring
significant additional demands and processing time requests.
Precisely, compared to the original Group by clause
(reference 100%), Rollup extension requires additional 2.385
seconds (reflecting additional 6.58%). Cube extension takes
additional 2.472 seconds (reflecting additional 6.80%).
However, results for additional groups and grand totals are
calculated. Tab. 4 shows the results for the 3 dimension core.

TABLE IV. PERFORMANCE - GROUP BY CLAUSE EXTENSIONS

Aggregate
function

Processing
time [ss.ff]

Number of
processed rows by
aggregate function

Group by 33.878
234 740 Rollup 36.263

Cube 36.350

V. METHODOLOGY

The primary goal of this paper is to provide a
methodology, how to manage and treat aggregate functions.
Number of the data, as well as the model complexity become
more interconnected and hidden relationships should be
identified. Data analytics is characterized by aggregating data
across the entire spectrum with the possibility of recording
changes over time. In this paper, various temporal
architectures are referenced, forming the input data layer for
the data warehouses and marts. In order to make a qualified
decision, it is necessary to obtain reliable data that can be used
to support this decision. The evolution and data changes are
commonly aggregated to point to the significant aspects and
features. One of the core function categories used in data
analysis is just aggregate functions. This paper discusses three
aspects of them aiming to create a methodology providing
reliable outputs supported by the performance. The first
category deals with the parameters of the aggregate functions.
Often, it is necessary to get the cardinality of the groups
operated by Sum or Count. Based on the performance
evaluation study, it is evident that the same results can be
obtained by various functions. The critical factor is just the
data type and data block mapping. Besides, the conversion
functions are inevitable parts. Namely, constants of the
parameters provide better performance, compared to attribute
references, even if the given value is already loaded in the
memory, since it is needed for previous processing. So the
loading process is not critical, rather the reference is
important. There is no strong difference between Sum and
Count aggregate functions, both provide almost the same
performance, however, the most important aspect is just

reflected by the parameters. Thus, the best option from the
performance point of view is to reference constant, even
provided as a function result.

The second evaluated stream is associated with the
function calls transforming data for the aggregations. In this
case, storing results in the Result cache memory structure can
be useful, reducing the processing time demands by more than
7%. However, the overall improvement strongly depends on
the function complexity. In general, the more difficult the
processing of the function is, the more significant the
importance of pre-storing the results is identified. Sure, by
assuming, that the function is deterministic. Here it is
important to note that although in our case it was a simple user
defined conversion function, we achieved an improvement of
more than 7%. If we used the functionality (PRAGMA UDF -
User defined function) [6] to reduce the context switch
between SQL and PL/SQL environments, the saving would be
more than 10%.

The last treated category relates to the Rollup and Cube
extensions. They are defined in the Group by section of the
Select statement by producing group subtotals. As a
consequence, the order of attributes specified there is
important, defining the group formulation to be treated. When
using such extensions, the defined data set is processed and
evaluated only once, even multiple group categories are
defined, making the clause extensions very effective,
compared to the conventional method of multiple result sets
integration (UNION ALL), whereas for each statement, the
defined data set must be scanned separately.

VI. CONCLUSIONS

Data analysis is an inseparable part of the daily life. We
can clearly feel it in traffic, when we need to wait in queues
and traffic jams, so we could find a better way. Or it is strongly
visible in the environment, in which we perceive a significant
change in climate and related factors. It is necessary to take
historical data, identify patters related to the current situations
by aiming to predict the future states and make proper
reactions and make qualified decisions. Data are becoming
more and more complex with many hidden correlations and
relationships. By analyzing data, these dependencies and
features can be identified.

This paper deals with the data analysis by pointing to the
aggregate functions. It discusses impact of parameters,
function calls and Group by clause extensions on the
processing time. Since the data number is rising, proper
performance of the executed statements is critical. When
dealing with the data analysis, the problem is even deeper.
Therefore, the methodology of aggregating is proposed and
handled. As evident from the computational evaluation study,
parameters and block granularity of the data are important and
primarily impact the performance. Secondly, if there is
necessity to reflect function result inside the aggregate
function, caching the results can get measurable improvement.
Finally, Rollup and Cube extensions are discussed, allowing
to use multiple groups in one query. Their main purposes are
to calculate subtotals and grand total, however, it is operated
dynamically by scanning the input data set only once.

During the future research, we will point to defining our
own structure for storing function results, directly assigned to
the query. It is assumed, that a local memory repository can
provide better performance, since the searching in the
structure will be much faster than a common shared

repository. Besides, we will combine functions using
PRAGMA UDF. It allows to compile user defined function to
be primarily used in SQL. As a consequence, impact of
context switches between SQL and procedural language
environments is limited. Finally, impact of data types part of
the aggregate function parameters will be researched –
numerical vs. textual values with fixed or variable sizes.

ACKNOWLEDGMENT

This paper study was supported by the Erasmus+ project:
2022-1-SK01-KA220-HED-000089149, Project title:
Including EVERyone in GREEN Data Analysis
(EVERGREEN) funded by the European Union. Views and
opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the Slovak Academic
Association for International Cooperation (SAAIC). Neither the European
Union nor SAAIC can be held responsible for them.

This paper was also supported by the VEGA 1/0192/24

project - Developing and applying advanced techniques for
efficient processing of large-scale data in the intelligent
transport systems environment.

REFERENCES
[1] M. H. Bohlen, J. Gamper and C. S. Jensen, "How Would You Like to

Aggregate Your Temporal Data?," Thirteenth International
Symposium on Temporal Representation and Reasoning (TIME'06),
Budapest, Hungary, 2006, pp. 121-136, doi: 10.1109/TIME.2006.17.

[2] X. Gao, X. Zhao and X. Tian, "The Development of Evaluation System
for Ocean Environment Monitoring Data Analysis," 2015 2nd
International Conference on Information Science and Control
Engineering, Shanghai, China, 2015, pp. 970-972, doi:
10.1109/ICISCE.2015.219.

[3] S. Gummedelli, S. Tiruvayipati and S. Vemula, "A Work-Around
Methodology for Non-Executable Aggregate Functions on Encrypted
Databases," 2023 10th International Conference on Computing for
Sustainable Global Development (INDIACom), New Delhi, India,
2023, pp. 1232-1237.

[4] A. A. Hadwer, D. Gillis and D. Rezania, "Big Data Analytics for
Higher Education in The Cloud Era," 2019 IEEE 4th International
Conference on Big Data Analytics (ICBDA), Suzhou, China, 2019, pp.
203-207, doi: 10.1109/ICBDA.2019.8713257.

[5] Michal Kvet, Developing Robust Date and Time Oriented Applications
in Oracle Cloud: A comprehensive guide to efficient date and time
management in Oracle Cloud , Packt Publishing, 2023.

[6] M. Kvet and J. Papan, "The Complexity of the Data Retrieval Process
Using the Proposed Index Extension," in IEEE Access, vol. 10, pp.
46187-46213, 2022, doi: 10.1109/ACCESS.2022.3170711.

[7] A. Londhe and P. P. Rao, "Platforms for big data analytics: Trend
towards hybrid era," 2017 International Conference on Energy,
Communication, Data Analytics and Soft Computing (ICECDS),
Chennai, India, 2017, pp. 3235-3238, doi:
10.1109/ICECDS.2017.8390056.

[8] E. Meskovic, Z. Galic and M. Baranovic, "Managing Moving Objects
in Spatio-temporal Data Streams," 2011 IEEE 12th International
Conference on Mobile Data Management, Lulea, Sweden, 2011, pp.
15-18, doi: 10.1109/MDM.2011.44.

[9] E. Mozzafari and A. Seffah, "From Visualization to Visual Mining:
Application to Environmental Data," First International Conference on
Advances in Computer-Human Interaction, Sainte Luce, Martinique,
France, 2008, pp. 143-148, doi: 10.1109/ACHI.2008.29.

[10] M. Tayab, W. Zhou, M. Zhao and S. Li, "Big data and public services
for environmental monitoring system," 2016 11th International
Conference on Computer Science & Education (ICCSE), Nagoya,
Japan, 2016, pp. 139-143, doi: 10.1109/ICCSE.2016.7581569.

