
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

JSON Processing and Error Correction in SQL

Functions

Andrea Meleková

University of Zilina

Žilina, Slovakia

melekova2@stud.uniza.sk

Michal Kvet

University of Zilina

Žilina, Slovakia

Michal.Kvet@uniza.sk

Abstract— This paper presents a tool specifically designed

for relational databases, particularly Oracle, to improve SQL

query accuracy by automatically detecting and correcting

typographical errors, focusing on SQL functions. By extracting

schema information (e.g., table structures, column attributes,

and function signatures) and converting it into JSON format,

the tool automates the correction of errors in SQL functions and

parameters using algorithms such as Levenshtein distance. By

analyzing metadata retrieved through SQL queries, such as

SELECT * FROM USER_TAB_COLUMNS and SELECT *

FROM ALL_OBJECTS WHERE OBJECT_TYPE =

'FUNCTION', the system reduces manual correction efforts

while improving query reliability. This paper explores how the

tool automates function signature correction and parameter

validation, contributing to higher SQL query accuracy for both

educational and practical applications.

Keywords— SQL function parameters, relational databases,

JSON validation, Oracle, automated SQL correction

I. INTRODUCTION

 In database management, SQL is the most widely used
query language for interacting with relational databases.
However, even small typographical errors—such as
misspelled function names or incorrect parameter orders—can
cause SQL queries to fail or produce inaccurate results,
especially in educational environments where students are
learning SQL with complex databases like Oracle.

This work presents an automated tool specifically
designed for relational databases to correct SQL functions and
parameters, enhancing query accuracy. By extracting
metadata from an Oracle database, such as tables, columns,
and functions, and converting it into JSON format, the tool
automates the detection and correction of errors in SQL
queries. This significantly reduces manual intervention, which
is particularly valuable in educational and production
environments where debugging can impact performance and
learning outcomes.

The tool uses algorithms like Levenshtein distance for
error detection in function names and parameters.
Levenshtein’s string-matching capabilities allow for the
automatic correction of typographical errors, improving SQL
query reliability without manual correction efforts. This paper
demonstrates how the system automates the validation and
repair of SQL functions and explores how it handles errors
related to them, which are crucial in complex query execution.

Process automation is essential for minimizing manual
work and improving query processing efficiency. Existing
tools like XDa-TA [4][5] evaluate SQL statements for
correctness, but often lack automatic error correction
capabilities, limiting their usefulness in larger projects. Our
approach combines the flexibility of the JSON format with
automated error correction, focusing on how metadata about
tables and functions is stored and validated, particularly in

Oracle databases. The use of Levenshtein distance allows the
system to efficiently detect and correct function-related errors
in SQL queries [6], improving accuracy and reliability.

This system aligns with trends in automation, reducing
human error and simplifying the handling of large databases.
By automating the correction of typographical errors, it
improves both the accuracy and reliability of SQL queries in
relational database systems.

II. STATE OF THE ART

Automated error correction in SQL statements is a key
challenge in big data processing and cloud systems. Errors in
SQL statements, such as typos or incorrect parameters, can
lead to query failures and cause unnecessary burden on
developers who must manually correct these errors. A number
of solutions have been developed to address this issue using
various text processing and autocorrection techniques. These
solutions can be divided into several categories.

A. Using distance methods to correct errors

Distance methods such as Levenshtein distance are widely
used in the field of text processing for error detection and
correction. These algorithms measure the differences between
two strings based on operations such as insertion, deletion or
replacement of characters. Levenshtein distance is effective in
correcting typographical errors in text strings, such as function
names in SQL statements, but also in other applications,
including genetic sequences or search algorithms.

Levenshtein distance has proven useful in applications
where it is important to correct typographical errors in text
strings, including SQL statements, programming languages,
search algorithms, and biological sequences. This algorithm
identifies minimal differences between strings and enables
efficient automatic error correction without human
intervention [6].

The Damerau-Levenshtein distance is an extension of the
basic Levenshtein distance and includes transpositions of two
adjacent features. This method has proven successful in
detecting more complex errors, such as the swapping of two
characters in text data, which is particularly useful when
correcting typos in SQL function names and parameters.
Damerau-Levenshtein distance has been used in many
applications where not only simple typos need to be corrected,
but also errors in character order, for example, when
correcting misspelled identifiers or variables [7] .

Jaccard distance aims at comparing two sets of data and
measures the similarity between them. Jaccard distance is
often used in text analysis and retrieval algorithms, where it is
necessary to determine to what extent two sets overlap. This
approach is particularly useful for comparing large datasets
and detecting similarities between two SQL queries, where it
may be necessary to verify that the parameters or values of the

SQL queries are consistent [8]. Nevertheless, Jaccard distance
is not as accurate in detecting errors at the single-character
level and is therefore not ideal for correcting typos.

Hamming distance is a technique that measures the
differences between two strings of the same length. Hamming
distance is mainly used in coding where it is important to
detect errors in fixed formats such as codes or identifiers. In
SQL statements, Hamming distance is of limited use because
table or function names can be of different lengths, so it is
more commonly used in applications where strings are of
fixed length [9].

B. Comparison of Distance Algorithms in SQL Error

Detection

AfterDifferent distance algorithms offer unique
advantages depending on the type of error in SQL queries.
Levenshtein distance provides efficient error correction for
SQL queries by detecting minimal differences in function
names and parameters, making it well-suited for typographical
error correction.. The formula for Levenshtein distance is:

The Damerau-Levenshtein distance adds the ability to
detect adjacent transpositions, such as when SEVR is typed
instead of SERV. This makes it more effective in situations
where character order is frequently mistyped. However, it is
computationally more intensive than Levenshtein distance for
longer strings.

Jaccard distance is useful for comparing larger sets of
parameters or values in SQL queries, rather than detecting
individual character errors

Hamming distance is limited to strings of the same length,
which reduces its applicability in SQL error correction, where
function names and parameters often vary in length.

C. Using JSON files for data storage and validation

In the case of validating SQL statements and their
parameters, The use of JSON for data validation adds
flexibility and reduces the need for manual intervention,
streamlining SQL query corrections. For example, if there is a
change in the database structure, the data can be updated in a
JSON file and then used to validate SQL statements in real
time [2].

In practice, JSON is also used to store configurations in
programming languages such as Java or Python, where it
enables dynamic data management. For example, in NoSQL
databases such as MongoDB, JSON serves as a native format
for storing documents, allowing high flexibility when working
with dynamic data [4]. Compared to traditional formats such
as XML, JSON offers easier data serialization and
deserialization, making it a suitable tool for validating SQL
statement parameters and for storing metadata in database
systems [2] [4].

D. Automated systems for SQL statement correction

Automated SQL statement repair systems are concerned
with detecting, validating, and correcting syntax errors and

logical incorrectness in SQL queries. The most prominent
tools in this area include XDa-TA, SQLTutor, and
AutoGrader. These systems offer different approaches for
error detection, statement validation, and user feedback, while
differing in the degree of error correction automation and
usability.

1) XDa-TA
XDa-TA is an advanced system that deals with the

analysis and correction of SQL statements based on advanced
syntactic and logical rules. XDa-TA uses predefined patterns
and syntactic analysis rules to identify misused functions,
missing tables or incorrectly assigned parameters. The main
advantage of XDa-TA is its ability to analyze the structure of
SQL queries and provide contextual feedback.

XDa-TA uses syntax detection algorithms that rely on
syntax tree generation rules. This tree represents the structure
of an SQL statement and allows the system to identify
incorrect ordering of functions, incorrectly specified function
or parameter names, and other SQL query syntax errors.
Unlike XDa-TA, which focuses on feedback and query
structure analysis, our tool provides fully automated
correction, reducing the need for manual intervention. [4].

2) SQLTutor
Unlike SQLTutor or AutoGrader, which focus on

feedback, our tool offers fully automated correction, making
it more suitable for complex database environments.This
system was designed to compare the results of student queries
against correct solutions and provide basic feedback on syntax
and logic errors [11].

3) AutoGrader
AutoGrader is another system that is designed to

automatically evaluate SQL queries, especially in an academic
environment. AutoGrader analyzes SQL queries based on
syntactic and logical rules and provides immediate feedback
to students on their results [12] [13].

Compared to XDa-TA, AutoGrader does not have
advanced tools for detecting structural errors in SQL queries
or automatic repair. The main advantage of AutoGrader is its
fast feedback on the correctness of query outputs, but its use
is limited where automatic syntax and function corrections are
needed.

4) Comparison of Automated Error Correction Methods

and Tools
Distance algorithms, such as Levenshtein distance, enable

fully automated correction of textual errors at the individual
character level. This is particularly advantageous when SQL
statements are structured incorrectly or contain typos in
function or table names. For instance, Levenshtein distance
can detect and correct small but significant differences, such
as mistyping TOCAR instead of TO_CHAR, by measuring
the minimum number of edits needed to match the correct
function name [6].

In addition to distance algorithms, the use of JSON for data
validation adds another layer of flexibility. JSON files store

Fig. 1. Lavenstein distance formule

dynamic information about database structures, such as
function names and parameters, which the system uses to
validate SQL queries. This allows for efficient parameter
checking without needing to repeatedly access the database
[1], [2].

While systems like XDa-TA, SQLTutor, and AutoGrader
provide feedback on the correctness of SQL queries, they do
not offer automated correction. In contrast, the integration of
distance algorithms like Levenshtein distance in this system
automates the correction of typographical errors in SQL
function names and parameters at the character level. This
approach ensures a higher degree of automation compared to
traditional tools, which only provide validation feedback.

The combination of distance algorithms with JSON
validation enhances the automation process even further.
JSON dynamically stores database structure and function
information, making it easier to check parameters and validate
SQL queries without manual intervention. This provides
significant improvements in efficiency and accuracy over
traditional validation systems, which rely heavily on user
input for error correction [5], [6].

III. WORKING WITH JSON IN THE DATABASEINFOTOJSON

The DatabaseInfoToJSON class is a core component of
the system, written in Java, that handles various operations
involving database schema information. This class includes
methods that communicate with the database to extract
schema details, such as table structures, function names, and
parameters, and return the relevant data. It also saves the
extracted information into JSON format for validation and
correction purposes. Additionally, the class reads from JSON
files and loads the data into hashmaps, enabling efficient
processing during SQL query validation.

A. Use of JSON files in a database system

In the context of SQL statements, JSON is used to store
metadata about function names and parameters. This metadata
is stored in a JSON file, which serves as a reference source for
validating SQL statements. The system compares the entered
SQL statements with the reference data stored in the hashmap,
allowing immediate validation of the statements without
needing to repeatedly access the database.

B. Validation and correction of SQL statements

Each SQL statement contains associated parameters and
functions stored in a JSON file. This data can be manually
entered or automatically generated based on the database
structure. If the database structure changes, the JSON file is
updated to include the new parameter and function
information.

When an SQL statement is executed, the system parses the
statement and compares its components—such as table names,
functions, and parameters—with the information stored in the
JSON files. This process allows the system to detect errors,
such as typographical errors in function names or incorrectly
specified parameters. If errors are detected, the system
suggests a correction and updates the SQL statement based on
the data in the JSON files, thereby improving its accuracy and
reliability.

C. Detection Mechanism and Algorithm

The error detection process begins by retrieving the
relevant schema information from the database using SQL
queries, such as:

Fig. 2. Flow diagram of function processing

Fig. 3 Select to get function and parameters from database

The condition AND in_out = 'IN' in this SQL query filters
the results to show only the input parameters of the functions.
In database systems like Oracle, functions and procedures can
have parameters defined as input (IN), output (OUT), or both
(IN OUT).

This information is stored in JSON format and loaded into
hashmaps. When processing an SQL query, the system parses
each word in the query, determining whether the word is a
table name, function, alias, or something else. If the word is
not recognized, the system applies a string distance algorithm,
such as the Levenshtein distance algorithm, to determine the
closest match with a similarity threshold of 70%. This ensures
that even minor typographical errors in function names or
table attributes are automatically corrected.

For example, if a function is mistyped as ROUNDD
instead of ROUND, the system compares the function name
with the stored values from the JSON file, calculates the
similarity using the Levenshtein distance, and corrects it to
ROUND.

Once functions are identified and corrected, the system
checks the parameters passed to these functions. It first tries to
determine the parameter type. If the parameter refers to a
column, the system retrieves the data type from the hashmap.
If the parameter is not a column, the system attempts to parse
it and determine the data type. It then checks if the parameter
matches any valid variation of the function and, if so, corrects
the order of parameters. If the parameters do not match any
known variation, the system logs the issue for manual review.

This step-by-step approach ensures that the system can
automatically detect and correct errors in SQL statements,
improving both the efficiency and accuracy of database
queries.

D. Updating JSON Files and Dynamic Checking

A key feature of the system is its ability to dynamically
update JSON files. If there are changes to the database
structure or if new functions or parameters are added, the
JSON files are updated to reflect these changes. An automated
script tracks database versions and modifies the JSON files
accordingly. This ensures that the reference data used for
validation remains up-to-date and accurate at all times.

IV. CORRECTING TYPOS IN FUNCTIONS AND PARAMETERS

Typo correction in functions is implemented using a
Levenshtein distance based algorithm. This algorithm
compares the given function names with the correct names
stored in the database and determines the minimum distance
between them. If a similarity is detected, the system
automatically suggests a typo correction.

Functions in SQL statements are compared against the
database of functions stored in a JSON file to detect errors.
When incorrect names are identified, the system suggests
corrections based on the Levenshtein distance. When the
similarity level is high (e.g. 70%), the system corrects the
specified function name. This threshold can be adjusted based
on specific requirements. Words in quotation marks, column
or table names are excluded from this process to avoid
incorrect corrections.This step focuses only on the functions
themselves, regardless of attributes.

V. PROCESSING FUNTION PARAMETERS

Processing function parameters is an important step in
parsing SQL statements. This process ensures that functions
use correct and valid parameters that are validated against the
values stored in the JSON file.

Initially, all parameters in function calls need to be
identified. This step involves parsing the SQL statements
looking for all occurrences of the functions. For each function
in the statement, we extract all the values specified in
parentheses that represent parameters. In this process, we need
to pay attention to the different formats and types of data that
can be specified in the parameters.

Once the parameters are identified, a validation step
follows to ensure that the parameters are valid and match the
expected values. We verify that the parameters are entered in
the correct format and that they are compatible with the
expected data types.

The processing of parameters is different for different
types of functions, so it is important to ensure that the system
can handle different cases. Special processing is required for
functions that use asterisk (for example, aggregation
functions), where parameters may take different forms and
require special validation. These functions are checked
separately to see if they can contain asterisk. Checking and
processing functions that allow optional parameters or a
variable number of parameters ensures that all variants are
correctly processed. All overloading types are always stored
in a JSON file, so we cover all combinations and options of
parameters

All parameter issues are documented within the logs to
ensure transparency and allow tracking of errors and their
solutions.

VI. EXAMPLE OF JSON PROCESSING AND FUNCTION

CORRECTION

This section focuses in detail on the processing of data
from JSON files and the subsequent correction of typos in
function names and parameters in SQL statements. The
information from JSON files is used for automated correction
and optimization of SQL code.

A. JSON file processing

 JSON files store important metadata about the functions
in the database, including function names and their
parameters. This metadata is essential for automated
validation and error correction in SQL statements because it
allows you to compare the specified functions and parameters
against predefined values. For example, a JSON object may
contain different variations of the ROUND function and
allowed parameter combinations, giving systems accurate
data to correct incorrect function calls.

This JSON object displays the different variants of the
ROUND function, where each object in the parameters field
represents different combinations of parameters that the
function can accept. This overview allows us to better
understand what parameters are accepted for a given function
and how to apply them correctly.

B. Fixing typos in function names

Typos in function names are corrected using the
Levenshtein distance algorithm, which compares the specified
function name with the correct names stored in JSON files.
For example, if the user enters the function name "ROUNDD"
instead of "ROUND", the algorithm recognizes that the
distance between the two is small and suggests the correct
function name.

C. Correcting typos in function parameters

After correcting the function names, the system will focus
on the parameters. The parameters are checked based on the
data types and the correct order. If the parameters are in the
wrong order or incorrect data types are entered, the system
will suggest correcting them. For example, if the parameters
for the ROUND function are entered incorrectly, the system
will swap or correct the values based on the data from the
JSON files. Example of SQL statement with errors:

After correcting the function names with the help of
Lavenstein distance :

And after the last correction the final correct statement will
be created.

D. Checking the correctness of the parameters

The final check ensures that all the parameters are
correctly entered, in the correct order and have the required
data types. This validation ensures that SQL statements will
be executed efficiently and without errors. If any parameters
do not match, the system flags them for manual checking.

VII. EXPERIMENTS

To validate the functionality and efficiency of the
proposed system, we conducted a series of experiments to
detect and correct errors in SQL statements and process data
stored in JSON files. These experiments were designed to
simulate real-world conditions in a database environment with
large volumes of data. The tests focused on two main areas:
correcting typos in SQL statements using Levenshtein
distance and validating parameters and functions in statements
using data stored in JSON files.

A. Scenario experiments

 The experiments were designed to test the effectiveness of
the Levenshtein distance algorithm in detecting and correcting
errors in SQL statements. The algorithm showed high
accuracy especially for longer function names where the
differences between the erroneous and correct names were
clear. However, for shorter names, there were problems with
error detection, indicating the need for further optimization.
For very short names, however, the algorithm exhibited lower
accuracy, suggesting the need to add mechanisms to better
handle corrections for short names. The problem could be
addressed by dynamically adjusting the desired similarity
depending on the length of the string, which would improve
the flexibility of the algorithm.

B. Tests for feature repair

One of the key areas of experimentation was the real-time
correction of typos in SQL statements. The advantage of this
approach is its applicability in dynamic database systems
where commands are often executed in a data-intensive
environment. The system was able to quickly identify and
correct incorrect function and parameter names, which
contributed to the reliability of the results.

However, we noticed that with more functions in the
commands, the time required to analyze the distances
increased, which could negatively affect the performance of
the system when processing very large datasets. In addition,
functions that were not frequently used or were at the end of
JSON files were processed more slowly, suggesting a
challenge for deploying the system in real-world applications
with large volumes of data.

C. Parameter validation tests

The next phase of experiments focused on parameter
validation using data stored in JSON files. The automated
validation was successful in cases where the parameters were
unambiguous and correctly defined, allowing the system to

Fig. 4 Example of JSON file

Fig. 5 Select with mistakes in function part

Fig. 3

Fig. 6 Select with corrected function's name

Fig. 4

Fig. 7 Select with correct parameters

Fig. 5

correctly identify and correct incorrect values. However, the
problem occurred with more complex parameters such as
dates or specific ranges of values, where the system was not
always able to correctly identify the parameter data type. This
caused problems when validating some functions, such as the
TO_CHAR function that works with dates.

The results of these tests showed that the system can work
efficiently with simply defined parameters, but manual
checking is required for more complex structures, which can
be a challenge for fully automating the validation of more
complex data types in real-world settings.

D. Summary of Experiments

Overall, the experiments showed that the proposed
solution for error correction in SQL statements is effective,
especially when working with simply structured data.
However, the system has some limitations with more complex
data types such as dates and ranges of values, where improved
validation mechanisms are needed. The results of the
experiments highlighted the need for further research aimed at
optimizing the algorithm for short names and improving the
processing speed of large datasets.

The automated error correction system was tested using a
dataset of approximately 500 different SQL queries, each
containing intentional errors in function names and
parameters. The performance of the system was measured in
terms of time taken, reliability, and percentage of errors
corrected.

The function and parameter correction process is
extremely fast, relying on a simple for loop for function
corrections and parameter checks using a hash table. The
entire correction process takes only a few milliseconds to
second, even in the worst case scenario, where function is near
the end of JSON file.

For function names longer than 5 characters, 90% of the
functions were correctly identified and corrected. In contrast,
for function names with 4 or fewer characters, the success rate
dropped to 70%, due to the increased likelihood incorrect
correction of function.

VIII. DISCUSSION

The experimental results demonstrate that the proposed
system for correcting SQL queries using the Levenshtein
distance algorithm and validating parameters through JSON
storage significantly enhances SQL query processing
accuracy. The system effectively reduced manual correction
efforts by automating the detection and correction of
typographical errors in SQL function names and parameters.

One of the main advantages of this system is its ability to
handle complex SQL functions automatically, which is
particularly relevant in environments that process large
datasets. By integrating distance algorithms and automated
parameter validation, the tool provides a higher level of
automation compared to existing systems like SQLTutor and
AutoGrader. These existing systems offer feedback but lack
the capability to automatically correct errors.

A. Benefits of solution

One of the biggest advantages of the proposed system is
its ability to automate the correction of typos and incorrectly
specified functions and variables in SQL statements. Using
Levenshtein distance, the system can quickly and efficiently

identify minor errors in text strings and automatically suggest
a correction based on the metadata stored in JSON files.

The use of JSON files to store metadata and validate
parameters is another innovative aspect of this solution.
Storing information about correct parameters and functions in
a structured format allows the system to dynamically validate
commands before they are executed, reducing errors and
increasing the reliability of queries.

By automating and validating data, the system
significantly reduces the need for manual intervention, which
is often the source of further errors. Automated correction and
validation allows developers to focus on other tasks, saving
time and increasing the efficiency of working with databases.

B. Limitations of the Solution

Although the proposed system has demonstrated its
effectiveness in correcting typos and validating simply
structured parameters, we have encountered several
challenges that need to be addressed in further development.

As experiments have shown, the Levenshtein distance
algorithm is less efficient for very short function names, where
the differences between correct and incorrect names are
minimal. This limitation may lead to incorrect corrections, so
the algorithm needs to be supplemented in the future with
additional rules to increase its accuracy in these cases.

when validating complex data types such as dates or
specific value formats, the system has encountered problems
that require manual checking. For example, the system was
not always able to correctly identify the data type or correctly
validate dates, leading to validation failures in some cases.

IX. CONCLUSION

The proposed system for automated error correction in
SQL queries has proven to be an effective tool in reducing
manual correction efforts and improving overall query
accuracy. By employing the Levenshtein distance algorithm
for detecting and correcting typographical errors in SQL
function names and leveraging JSON for parameter
validation, the system enhances both educational and practical
applications. This automation not only ensures higher
reliability in SQL query execution but also minimizes the time
spent on manual debugging and correction.

Despite these advantages, there are several opportunities
for further refinement. The system's current limitation in
handling short function names, where the Levenshtein
algorithm shows reduced accuracy, highlights the need for
additional rules or dynamic threshold adjustments. By
improving the detection of short function name errors, the
system could offer more reliable corrections across various
query scenarios.

Another area for future research is the validation of
complex data types, such as dates and specific value formats,
which still require manual intervention. Developing
specialized algorithms to automate the detection and
validation of these complex data types would significantly
expand the system's utility, especially in handling more
sophisticated SQL queries.

Furthermore, while the system has been successfully
tested in an Oracle environment, its core principles can be
extended to support other database management systems, such
as PostgreSQL and MySQL. Expanding compatibility to these

systems would make the tool more versatile and applicable in
a wider range of database environments.

In conclusion, the system shows great promise in
automating error correction in SQL queries, with several
avenues for future enhancement. Addressing its current
limitations in short function names and complex data types,
along with broadening its database support, will contribute to
making this tool an even more robust and indispensable
resource for database administrators and developers.

ACKNOWLEDGMENT

This paper was supported by the VEGA 1/0192/24 project -

Developing and applying advanced techniques for efficient

processing of large-scale data in the intelligent transport

systems environment.

REFERENCES

[1] D. Crockford, "The application/json Media Type for JavaScript Object

Notation (JSON)," RFC 4627, IETF, July 2006. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4627

[2] T. Bray, "The JavaScript Object Notation (JSON) Data Interchange
Format," RFC 8259, IETF, Dec. 2017. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8259

[3] C. L. Boisvert, K. Domdouzis, and J. License, "A Comparative
Analysis of Student SQL and Relational Database Knowledge Using
Automated Grading Tools," in Proc. 2019 IEEE Global Engineering
Education Conf. (EDUCON), April 2019, pp. 1128–1133. [Online].
Available: https://ieeexplore.ieee.org/document/8586684

[4] Bhangdiya et al., "The XDa-TA system for automated grading of SQL
query assignments," in Proc. 2019 34th IEEE/ACM Int. Conf.

Automated Software Engineering (ASE), Nov. 2019, pp. 1049–1053.
[Online]. Available: https://ieeexplore.ieee.org/document/7113403

[5] M. Martin and M. Nathan, "Automated Grading of SQL Queries," in
Proc. 2019 13th IEEE Int. Conf. e-Science (e-Science), Dec. 2019, pp.
284–288. [Online]. Available:
https://ieeexplore.ieee.org/document/8731495

[6] S. Wu and U. Manber, "Fast text searching: allowing errors,"
Commun. ACM, vol. 35, no. 10, pp. 83–91, Oct. 1992. [Online].
Available:
https://www.researchgate.net/publication/228818851_Using_TF-
IDF_to_determine_word_relevance_in_document_queries.

[7] S. Liu, “Wi-Fi Energy Detection Testbed (12MTC),” 2023, gitHub
repository. [Online]. Available: https://github.com/liustone99/Wi-Fi-
Energy-Detection-Testbed-12MTC

[8] J. Ramos, "Using TF-IDF to determine word relevance in document
queries," in Proc. 1st Instructional Conf. Machine Learning, 2003.
[Online]. Available:
https://www.cs.odu.edu/~tkennedy/cs595f18/lectures/TF-IDF-
Ramos.pdf

[9] R. Hamming, "Error Detecting and Error Correcting Codes," Bell
Syst. Tech. J., vol. 29, no. 2, pp. 147–160, April 1950. [Online].
Available: https://ieeexplore.ieee.org/document/6772729

[10] J. Bloch, Effective Java, 3rd ed., Addison-Wesley, 2018. [Book]

[11] B. N. Groznik, "SQLTutor: A Tool for SQL Query Evaluation," J.
Comput. Sci. Educ., vol. 25, no. 3, pp. 45-52, Sept. 2019. [Online].
Available: https://ieeexplore.ieee.org/document/8992341

[12] P. R. Nair, "A Comparative Study on Automated SQL Grading Tools:
SQLTutor and AutoGrader," in Proc. 2020 Int. Conf. Comput. Sci.
Educ., Aug. 2020, pp. 305–312. [Online]. Available:
https://ieeexplore.ieee.org/document/9205645

[13] S. Mukherjee et al., "AutoGrader: An Automated SQL Query Grading
System," in Proc. 2019 IEEE Frontiers Educ. Conf. (FIE), Oct. 2019,
pp. 1-7. [Online]. Available:
https://ieeexplore.ieee.org/document/9052199

